Alt-Ergo 2.5

vers un solveur modele

21/11/2022

Quick presentation

The Alt-Ergo club

Alt-Ergo is an automatic prover of mathematical formulas used by

MITSUBISHI
ANELECIRC THALES

Changes for the Better

rRusT® sorTAdaCore

=

The Team

Hichem Rami Ait El Hara - Junior R&D
Engineer and PhD student in SMT
solvers under the supervision of
Francois Bobot

Guillaume Bury — R&D Engineer holding
a PhD in SMT solvers

Steven De Oliveira - R&D Engineer
holding a PhD in Formal Verification

Pierre Villemot - R&D Engineer holding a
PhD in Mathematics and Full-time
maintainer of Alt-Ergo

Features in the last release (Alt-Ergo 2.4.2)

e Partial support of the input language SMT-LIB 2
e Supported theories:

= Uninterpreted Function (UF)

Linear Integer Arithmetic (LIA)
Linear Rational Arithmetic (LRA)

Floating-point arithmetic (only for the native input format)
= ADT
= Bitvectors and Arrays (initial support)

e First-order polymorphism

e Lablgtk3 and Dune 3 updates

e Bug fixes

Upcoming Features on Next

e (Merged - MERCE project) Models (counterexamples) for Arithmetics and Enums
e (This week) Finalize Dolmen integration
s Complete support of the input language SMT-LIB 2
= Better syntax error handling
= More input languages supported (as tptp)
e Support for SMT-LIB 2 floating-point arithmetic (FP)
o Better CLI (simpler options) (user feedback)

e Integrate the model feature in Why3

Models generation

Use cases

$ alt-ergo grothendieck.ae --model

grothendieck.ae

logic a,b,n:int

axiom init: n=57
axiom range: 1<=a<=n and 1<=b<=n

goal is_prime:
a*b = n -> a=1 or b=1

$ alt-ergo commutative.ae --model

commutative.ae

1

logic f: int,int->int

axiom a: forall x:int. forall y:int.

forall z:int. f(x,f(y,z))=f(f(x,y),z)

goal g:
forall x:int. forall y:int. f(x,y)=f(y,x)

output model

1 (model

2 (define-fun a () int 3)
(define-fun b () int 19)
(define-fun n () int 57))

output model

1 (model
2 (define-fun x () int (- 1))
(define-fun y () int 0)
(define-fun f ((u int) (v int)) int
(ite (and (= uy) (=v X)) 20)))

Use cases

output model

1 (model
(define-fun by_row () bool true)
(define-fun by_column () bool true)
(define-fun by_square () bool true)

sudoku.ae

type one_four = One | Two | Three | Four

logic grid: int, int -> one_four

1
2
3
4
5
6
7
8
9

predicate by_row =
forall i:int. 0<=i<4 ->
distinct(grid(i,0),grid(i, 1),
grid(i,2),grid(1i,3))

predicate by_column =
forall j:int. 0<=j<4 ->
distinct(grid(0,j),grid(1,3),
grid(2,3),9rid(3,3))

predicate by_square =
forall 1,j:int. 0<=i<2 -> 0<=j<2 ->
distinct(grid(2*i,2*j),grid(2*1i,2*j+1),
grid(2*i+1,2*j),grid(2*i+1,2*j+1))

axiom init:
grid(0,0)=Three
and grid(0,1)=Four
and grid(0,2)=0ne
and grid(1,1)=Two
and grid(2,2)=Two

(define-fun

(ite
(or
(and
(and
(and
(and
Two
(ite
(or
(and
(and
(and
(and
Three
(ite
(or
(and
(and
(and

arg_0 3)

= arg_0 2)

1)
)

grid ((arg_0 int) (arg_1 int)) <s

arg_1 0))

= arg_1 2))
= arg_1 1))

arg_1 3)))

What will happen next!

e Checking models with Dolmen (for unquantified theories)
e (OptiAE project - MERCE project) Optimization of values in generated models
o (Décysif project) Generate models for other theories:
= (WIP) ADT
= Floating-point arithmetic
= Bitvectors
= Arrays
= (Recursive) Records
e New (documented) API

e Improve ground reasoning on Bitvectors and ADT

