
Counterexamples Validation in Why3 and

SPARK

Claude MARCHÉ, Solène MOREAU

ProofInUse Meeting, November 21st, 2022

LMF, Inria, U. Paris-Saclay, etc., AdaCore



Context



Motivation: Explain Proof Failures

let test1 (x: int)

= let y = x + 1 in

assert { y <> 43 }

let f (x: int) : int

ensures { result > x }

= x + 1

let test2 (x: int)

= let y = f x in

assert { y = x + 1 }

Motivation

How to help the user understand why proof fails?

1



Reminder: how SMT solvers are used by Why3

General workflow

• Verification Condition = declarations + hypotheses + goal

• Negate the goal → SMT solver, ask for satisfiability

• if Unsat → VC is valid

• if Sat → solver proposes a model

let test1 (x: int)

= let y = x + 1 in

assert { y <> 43 }

VC is x,y : int ; H: y = x+1; G: y <> 43

SMT query is x,y : int ; H: y = x+1; G: y = 43

→ Sat, model is x=42, y=43

2



Same with test2

let f (x: int) : int

ensures { result > x }

= x + 1

let test2 (x: int)

= let y = f x in

assert { y = x + 1 }

VC is x,y : int ; H: y > x; G: y = x+1

SMT query is x,y : int ; H: y > x; G: y <> x+1

→ Sat, model is x=0, y=2

3



Counterexamples in Why3 and in SPARK

Hauzar, Dailler, Marché, Moy [JLAMP 2018]

Turn the proposed model into a counterexample (CE) at the level

of Why3, then at the level of SPARK

WhyML code

VC generator Proof tasks Transformations

SMT-LIB printer

SMT queries

mapping of SMT terms

to program variables
SMT solver

Model

CE at program level

4



Counterexamples: the Good, the Bad, and the Ugly

DEMO

Main issue

Generated CEs are only candidate counterexamples

• incompleteness of the SMT solver (non-linear arithmetic,

quantifiers)

• solver interrupted after a time limit

SPARK experience even worse

Experience showed CEs are quite often wrong, and thus misleading

for the user

Identified need

It is desirable to validate the CE before giving it to the user

5



Counterexamples: the Good, the Bad, and the Ugly

DEMO

Main issue

Generated CEs are only candidate counterexamples

• incompleteness of the SMT solver (non-linear arithmetic,

quantifiers)

• solver interrupted after a time limit

SPARK experience even worse

Experience showed CEs are quite often wrong, and thus misleading

for the user

Identified need

It is desirable to validate the CE before giving it to the user

5



Need for Categorisation

Other identified need

Distinguish true mistake in the code versus incomplete annotations

Categories of proof failures [Petiot et al. 2018]

• Non-conformity

• Sub-contract weakness

Approach used: program transformations, symbolic execution

(PathCrawler)

Validation and Categorisation [Becker, Lourenço, Marché,

2021]

Use Runtime-Assertion-Checking to check validity of CE and

categorise

6



Runtime Assertion Checking (RAC) in Why3

• command

why3 execute

exists for a long time, but does not execute annotations

• Benedikt added support for executing annotations
(option --rac)

• first by an ad-hoc partial evaluator

• second by calling a prover to check them valid

(option --rac-prover)

7



Small-step RAC

• execute programs, including function calls

• evaluate assertions when they are met

• evaluate pre-conditions at function call

• evaluate post-conditions at function exit

• evaluate loop invariants at each iterations of loops

let test1 (x: int)

= let y = x + 1 in

assert { y <> 43 }

CE was proposing x=42

RAC of test1 with x=42:

assertion violation

8



Small-step RAC not enough

let f (x: int) : int

ensures { result > x }

= x + 1

let test2 (x: int)

= let y = f x in

assert { y = x + 1 }

CE was proposing x=0

RAC of test2 with x=0: everything fine

Towards giant-step RAC

Need to “mimic” the VC generation, which considers the function

call as an “atomic” operation

9



Giant-step RAC briefly

Giant steps are what you take

Proving on the moon

I hope my code don’t break

Proving on the moon

• Execution of a function call:

• checks pre-conditions

• take values of modified variables and result from the CE

(oracle)

• checks post-conditions

• Execution of a loop: similar idea, only one arbitrary iteration

(see details in https://hal.inria.fr/hal-03213438)

10

https://hal.inria.fr/hal-03213438


Example

let f (x: int) : int

ensures { result > x }

= x + 1

let test2 (x: int)

= let y = f x in

assert { y = x + 1 }

Giant-step RAC of test2 with x=0, y=2

• call f x : pre OK, result taken from model = 2, post OK

• assertion: failed!

Small-step OK, giant-step failed → subcontract weakness

11



Categorisation

• Small-step RAC failure : non-conformity

• Small-step RAC OK, Giant-step RAC Failed :

subcontract-weakness

• otherwise : bad counterexample, don’t show it to the user

Taking also incomplete results for both RAC:

• lots of sources of incompleteness, including

• solver unable to decide a formula

• missing value from the CE

• we may answer : non-conformity or sub-contract weakness

What’s next

Experimental results from SPARK

12



Small-step RAC in SPARK

Small-step in WhyML not good for SPARK

• WhyML generated contains many val, that is functions with

contracts but no bodies

• Small-step RAC is thus not convenient for categorisation

Small-step directly in Ada

• Dedicated interpreter for Ada/SPARK code, in Ada

• Started by Benedikt

• Continued later by Viviane, intern at AdaCore

13



Outline

Context

Current State in SPARK, Statistics

Work In Progress

Future work

14



Current State in SPARK, Statistics



Situation on January 2022

SPARK testsuite:

2256 test programs, 915 of which containing unproved VC.

Candidate counterexamples for ∼ 4000 VC.

Repartition of the categorization for these candidate CE:

Bad counterexample 19.4 %

Non-conformity 18.7 %

Subcontract weakness 2.2 %

Non-conformity or subcontract weakness 14.5 %

Incomplete 45.2 %

missing return value 36.5 %

cannot decide 29.5 %

unsupported values 15.9 %

other reasons 18.2 %

15



Situation on January 2022

SPARK testsuite:

2256 test programs, 915 of which containing unproved VC.

Candidate counterexamples for ∼ 4000 VC.

Repartition of the categorization for these candidate CE:

Bad counterexample 19.4 %

Non-conformity 18.7 %

Subcontract weakness 2.2 %

Non-conformity or subcontract weakness 14.5 %

Incomplete 45.2 %

missing return value 36.5 %

cannot decide 29.5 %

unsupported values 15.9 %

other reasons 18.2 %

15



Improvements since January 2022 (1)

Small-step RAC (on the SPARK side) widely extended.

Lack of return values in CE models: needed by the giant-step

RAC to extract results of function calls.

• Was missing for val functions.

• More return values when pushing let...in... in the

context.

16



Improvements since January 2022 (1)

Small-step RAC (on the SPARK side) widely extended.

Lack of return values in CE models: needed by the giant-step

RAC to extract results of function calls.

• Was missing for val functions.

• More return values when pushing let...in... in the

context.

16



Improvements since January 2022 (2)

RAC should also execute goals.

• Error Model term has no location.

Do not forget to specify --rac-prover.

Some technical bug fixes.

• E.g. parsing errors of SMT models when switching to cvc5.

(WIP) Collection of functional values (more details later).

17



Improvements since January 2022 (2)

RAC should also execute goals.

• Error Model term has no location.

Do not forget to specify --rac-prover.

Some technical bug fixes.

• E.g. parsing errors of SMT models when switching to cvc5.

(WIP) Collection of functional values (more details later).

17



Improvements since January 2022 (2)

RAC should also execute goals.

• Error Model term has no location.

Do not forget to specify --rac-prover.

Some technical bug fixes.

• E.g. parsing errors of SMT models when switching to cvc5.

(WIP) Collection of functional values (more details later).

17



Improvements since January 2022 (2)

RAC should also execute goals.

• Error Model term has no location.

Do not forget to specify --rac-prover.

Some technical bug fixes.

• E.g. parsing errors of SMT models when switching to cvc5.

(WIP) Collection of functional values (more details later).

17



Updates of statistics...

...or how to try not comparing apples and oranges.

Some improvements and inaccuracy fixes on statistics:

• more accurate analysis of cases without categorization,

• checking of CE reactivated on several tests from the SPARK

testsuite,

• more accurate analysis of incompleteness reasons,

• more automation to compute statistics.

18



Situation in November 2022

Overview picture:

• a candidate CE is checked for ∼ 70 % of unproved VC with

CE checking requested,

• (for the remaining ∼ 30 %, there is no candidate CE).

Repartition of the categorization for these candidate CE:

19



Situation in November 2022

Overview picture:

• a candidate CE is checked for ∼ 70 % of unproved VC with

CE checking requested,

• (for the remaining ∼ 30 %, there is no candidate CE).

Repartition of the categorization for these candidate CE:

19



Situation in November 2022 — in more details

Small-step RAC results when the categorization is incomplete.

20



Situation on November 2022 — in more details

Giant-step RAC results when the categorization is incomplete.

21



Work In Progress



Towards less incomplete verdicts

On the Why3 side, the main reason for incomplete verdicts is

currently “cannot decide”, i.e. when the RAC prover cannot

evaluate a formula.

Idea

Collect functional values in SMT models to help the RAC prover.

DEMO

22



A bit of history

(define-fun c () Int 0)

(define-fun f ((x1 Int) (x2 Int)) Int (ite (= x1 x2) 1 0))

23



A bit of history

(define-fun c () Int 0)

(define-fun f ((x1 Int) (x2 Int)) Int (ite (= x1 x2) 1 0))

23



A bit of history

(define-fun c () Int 0)

(define-fun f ((x1 Int) (x2 Int)) Int (ite (= x1 x2) 1 0))

23



Simpler and stronger model parser for CE values

Collect functional values in SMT models to help the RAC prover.

Main issue

Complex transmission chain from the SMT output to the terms in

the Why3 task for the RAC, “forgetting” the type of values for

historical reasons.

First steps (work in progress):

• interpret and check types in SMT models,

• simplify the transmission chain to directly translate SMT

outputs to Why3 terms.

Side-effect: extended support for arrays, floats, reals.

24



Simpler and stronger model parser for CE values

Collect functional values in SMT models to help the RAC prover.

Main issue

Complex transmission chain from the SMT output to the terms in

the Why3 task for the RAC, “forgetting” the type of values for

historical reasons.

First steps (work in progress):

• interpret and check types in SMT models,

• simplify the transmission chain to directly translate SMT

outputs to Why3 terms.

Side-effect: extended support for arrays, floats, reals.

24



Future work



Future work

Incompleteness in the Why3 small- and giant-step RAC:

collect functional values from SMT models.

Incompleteness in the SPARK small-step RAC:

extend the range of supported values.

No counterexample for ∼ 30 % of unproved VC in the

SPARK testsuite:

extend the fuzzing mechanism allowing to generate candidate CE

values when the CE returned by SMT solvers are absent or bad.

25



Future work

Incompleteness in the Why3 small- and giant-step RAC:

collect functional values from SMT models.

Incompleteness in the SPARK small-step RAC:

extend the range of supported values.

No counterexample for ∼ 30 % of unproved VC in the

SPARK testsuite:

extend the fuzzing mechanism allowing to generate candidate CE

values when the CE returned by SMT solvers are absent or bad.

25



Future work

Incompleteness in the Why3 small- and giant-step RAC:

collect functional values from SMT models.

Incompleteness in the SPARK small-step RAC:

extend the range of supported values.

No counterexample for ∼ 30 % of unproved VC in the

SPARK testsuite:

extend the fuzzing mechanism allowing to generate candidate CE

values when the CE returned by SMT solvers are absent or bad.

25



Thank you for your attention!

25


	Context
	Current State in SPARK, Statistics
	Work In Progress
	Future work

