7 Iteratrs in Creu:

N

f

v

i

gy

02

R

The pointer problem

void fn use swap(int* a, int* b, int* c) {
swap(a, b);
// What is c¢ here?

}

The pointer problem

void fn use swap(int* a, int* b, int* c) {

swap(a, b);
// What 13 _c here?
}
Mutated via global state

The pointer problem

May ali as

volid fn use swap(int* aj 1nt* b int* ¢) {

swap(a, b);
Mutated via global state

The pointer problem

May allas

volid fn use swap(int* aj 1nt* b int* ¢) {

swap(a, b);
Mutated via global state

Use separation logic?

The pointer problem

May allas

volid fn use swap(int* aj 1nt* b int* ¢) {

swap(a, b);
Mutated via global state

Use separation logic?

Mixes memory safety proof with functional proof

The pointer problem

May allas

volid fn use swap(int* aj 1nt* b int* ¢) {

swap(a, b);
Mutated via global state

Use separation logic?

Mixes memory safety proof with functional proof

Poor automation, complex logic

The pointer problem

May allas

volid fn use swap(int* aj 1nt* b int* ¢) {

swap(a, b);
Mutated via global state

Use separation logic?

Mixes memory safety proof with functional proof
Poor automation, complex logic

To do better we need a new language..

Instead, use Rust

fn use swap(a: &mut u32, b: &mut u32, c: &mut u32) {
swap(a, b);
// ¢ 1s unchanged here

}

Instead, use Rust

fn use swap(a: &mut u32, b: &mut u32, c: &mut u32) {
swap(a, b);
// ¢ 1s unchanged here

}

Mutability XOR Aliasing: mutable borrows are unigue

Ownership typing statically guarantees memory safety

Instead, use Rust

fn use swap(a: &mut u32, b: &mut u32, c: &mut u32) {
swap(a, b);
// ¢ 1s unchanged here

}

Mutability XOR Aliasing: mutable borrows are unigue

Ownership typing statically guarantees memory safety

How to verify? Separation logic?

Instead, use Rust

fn use swap(a: &mut u32, b: &mut u32, c: &mut u32) {
swap(a, b);
// ¢ 1s unchanged here

}

Mutability XOR Aliasing: mutable borrows are unigue

Ownership typing statically guarantees memory safety

How to verify? Separation logic?

No! Why prove memory safety twice?

Instead, use Rust

fn use swap(a: &mut u32, b: &mut u32, c: &mut u32) {
swap(a, b);
// ¢ 1s unchanged here

}

Mutability XOR Aliasing: mutable borrows are unigue

Ownership typing statically guarantees memory safety

How to verify? Separation logic?

No! Why prove memory safety twice?

Today’s objective: Verifying lterators
Or how to write Vec: : Len in O(n) time

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;
let w = v
.iter mut()
.map(|x| { cnt += 1; a + 1 })
.collect();

assert_eq! (cnt, 4);
for 1 in 0..4 {

assert eq! (w[i], v[i] + 1);

}

Today’s objective: Verifying lterators
Or how to write Vec: : Len in O(n) time

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;

ﬂlgg\y'= \"
////////’—7 .iter mut()
.map(|x| { cnt += 1; a + 1 })

Mutable lterators .collect ();

assert_eq! (cnt, 4);

for 1 in 0..4 {
assert eq! (w[i], v[i] + 1);

}

Today’s objective: Verifying lterators
Or how to write Vec: : Len in O(n) time

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;

ﬂlggﬁy = v
////////”7 .iter mut()
.map(|x| { cnt += 1; a + 1 })

Mutable lterators .collect ();

assert_eq! (cnt, 4);

for 1 in 0..4 {
Higher-Order Iterators assert eq! (w[i], v[i] + 1);

}

Today’s objective: Verifying lterators
Or how to write Vec: : Len in O(n) time

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;

let w = v
/ ‘KA. iter_mut () /
.map(|x| { cnt += 1; a + 1 })

Mutable lterators .collect ();

Side-Effects

assert_eq! (cnt, 4);

for 1 in 0..4 {
Higher-Order Iterators assert eq! (w[i], v[i] + 1);

}

Today’s objective: Verifying lterators
Or how to write Vec: : Len in O(n) time

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;

let w = v
/ ‘KA. iter_mut () /
.map(|x| { cnt += 1; a + 1 })

Mutable lterators

Side-Effects

.collect(); <

assert _eq! (cnt, 4); ‘*55‘\\\\\\\\\\

Traversal and
collection creation

for 1 in 0..4 {
Higher-Order Iterators assert eq! (w[i], v[i] + 1);

}

Today’s objective: Verifying lterators
Or how to write Vec: : Len in O(n) time

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;

iet\y = v Side-Effects
/ .iter mut()

.map(|x| { cnt += 1; a + 1 })

M le lterat
utable lterators .collect(); <

assert _eq! (cnt, 4); ‘*55‘\\\\\\\\\\

Traversal and
collection creation

for 1 in 0..4 {
Higher-Order Iterators assert eq! (w[i], v[i] + 1);

}

for-loops

What are lterators?

* Rust for-loops are powered using iterators.
 |terators can be created using combinators (map, filter, chain).

e Can be expressed as the following trait:

trait . {
type Item;

fn next (&mut) => < ::ltem>;

}

* This captures a wide variety of iteration: non-deterministic,
effectful, and non-terminating

Challenges

Specifying Iterators

Specifying Iterators

 Key Problem 1: A specification scheme for iterators
« Composable & Ergonomic
e Supports non-determinism and interruptible iteration

e Supports side-effects and higher-order constructs (map)

Specifying Iterators

 Key Problem 1: A specification scheme for iterators
« Composable & Ergonomic
e Supports non-determinism and interruptible iteration
e Supports side-effects and higher-order constructs (map)

 Key Problem 2: How do we enable users to write expressive
iInvariants which focus on the core of their problem.

Using Creusot we developed a framework to reason about lterators
and their clients.

* Problem 1: We view iterators as state machines described using
« produced, a transition relation used to describe next

« completed, captures the final states of the iterator

* Problem 2: We support for-loops through a new form of invariant
which accesses past values of an iterator.

* Provides invariants for free via iterator.

In this talk

Overview

|.Introduction to Creusot
|.Mutable Value Semantics of Rust
ll.Prophecies

II.Specifying lterators
|.General schema

II. IterMut

IIl. for-loops

Introduction to Creusot

Creusot in a nutshell

A highly-automated verification platform for Rust

» Allows user to annotate their programs with specifications

"X == * x + 1
fn incr(x: &mut u32) {
*xX += 1;

}

» Specifications are then checked using automated provers (SMT)

 Provides many features to help write specifications and do proofs

10

Creusot in a nutshell

How does it work?

* Creusot views Rust programs as pure, functional programs

 Enabled by the mutable value semantics of Rust

* Metatheory formalized in @ RustHornBelt
* Avoids separation logic and instead uses first-order logic
* Fully handles mutable borrows: even nested in structures

* By using FOL, get much stronger automation

T Matsushita, Denis, Jourdan, Dreyer “RustHornBelt: a semantic foundation for
functional verification of Rust programs with unsafe code”, PLDI’22

11

The big secret: Rust is a
functional” language

*some squinting required

Encoding Rust in ML

Local variables

fn incr(mut x: u64, mut y: u64) let incr x y =
-> u64 { let x = x + y in
X += vy, X

X

Locally mut variables can be
modeled as shadowing

13

Encoding Rust in ML

Box?

fn incr(x: Box<u64>, y: Box<u64>)
-> Box<u64> {
*X = *y;
X

?

}

14

Encoding Rust in ML

Box?
fn incr(x: <u64>, y: <u64>) let incr x y =
-> <u64> { let x = x + y in
*X 4= *y; X

X

Boxes are erased!
Consequence of unigueness

14

Encoding Rust in ML

Immutable References?

fn incr immut(x: &u64, y: &u64)
-> u6b4d {
*x <4+ *Y

?

}

15

Encoding Rust in ML

Immutable References?

fn incr_immut(x: &u64, y: &u64) let incr immut x y =
-> u64 { Xty
*X-|-*Y

Also erased!
No mutation = No problems

15

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;

let x = &mut a;
let y = &mut 5;
*X += *Y;

assert_eq!(a, 5); .
}

Challenge: Synchronizing dataflow between
lender and borrower.

16

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;

let x = &mut a-P
let y = &mut 5; >
*X += *Y>

assert_eq!(a, 5); .
}

Challenge: Synchronizing dataflow between
lender and borrower.

16

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;

let x = &mut a:
let y = &mut 5; >
*x += *Yl

: ?

assert_eq!(a, 5); .

}

Challenge: Synchronizing dataflow between
lender and borrower. Solution? Prophecies

17

Synchronizing lender and borrower

* |ldea: Model mutable borrows as pair of current and final values
* We prophetize the final value, which the lender recovers.

* Depends on uniqueness and lifetimes of mutable borrows

b = &mut, a I

18

Synchronizing lender and borrower

* |ldea: Model mutable borrows as pair of current and final values
* We prophetize the final value, which the lender recovers.

* Depends on uniqueness and lifetimes of mutable borrows

b = &mut, a I

a IS inaccessible for the duration of a

18

Synchronizing lender and borrower

* |ldea: Model mutable borrows as pair of current and final values
* We prophetize the final value, which the lender recovers.

* Depends on uniqueness and lifetimes of mutable borrows

b £ &mut,, a

Borrow must agree with lender

18

Synchronizing lender and borrower

* \We encode this using any/assume non-determinism.
 any Will non-deterministically create a value

 assume places constraints on past choices

Creation
let borwr = { cur = lendr; fin = any } in
let lendr = borwr.fin in

Resolution

assume { borwr.cur = borwr.fin }

19

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;
let x = &mut a;
let y = &mut 5;
*X += *y;

assert_eq!(a, 5);

let main =
let a = 0 in
let x = { cur = a ; fin = any } in
let a = x.fin in
let vy = { cur = 5; fin = any } in
let x = { x with cur += y.cur } in

assume { x.fin = x.cur };
assert { a = 5 }

20

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;
let x = &mut a;
let y = &mut 5;
*X += Yy,

assert_eq!(a, 5);

let main =
let a = 0 in
let x = { cur = a ; fin = any } in
let a = x.fin in
let vy = { cur = 5; fin = any } in
let x = { x with cur += y.cur } in

assume { x.fin = x.cur };
assert { a = 5 }

21

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;
let x = &mut a;
let y = &mut 5;
*X += Yy,

assert_eq!(a, 5);

let main =
let a = 0 in
let x = { cur = a ; fin = any } in
let a = x.fin in
let vy = { cur = 5; fin = any } in
let x = { x with cur += y.cur } in

assume { x.fin = x.cur };
assert { a = 5 }

22

Encoding Rust in ML

Mutable References?

fn main () {
let mut a = 0;
let x = &mut a;
let y = &mut 5;
*X = *y;
drop(x);
assert_eq!(a, 5);

let main =
let a = 0 in
let x = { cur = a ; fin = any } in
let a = x.fin in
let vy = { cur = 5; fin = any } in
let x = { x with cur += y.cur } in

assume { x.fin = x.cur };
assert { a = 5 }

23

Specifying lterators

Modeling Iterators
Produces & Completed

 produces links two states of the iterator using a sequence of
items.

 Each call to next produces a new element and updates the state
of the iterator

 produces can thus be seen as a transitive, reflexive, transition
relation:

A €0 En
produces(I, [eg, ...,e,], I') = 1 > Vi
next next

» completed takes an iterator and states whether it is finished

25

Modeling iterators

trait Iterator: Sized {
type Item;

fn next(&mut =<1) => Option<seli::Item>;

26

Modeling iterators

trait : {
type Item;
predicate
fn completed() -> bool;
predicate
fn produces (, visited: Seqg< ::Item>, : Self) -> bool;
fn next (&mut) => < ::Item>;

27

Modeling iterators

trait {
type Item;

predicate
fn completed(&mut) —> bool;

predicate
fn produces (, visited: Seqg< ::Item>, : Self) -> bool;

law
ensures (a.produces (Seq: :EMPTY, a))
fn produces refl(a: Self);

law
requires (a.produces(ab, b))
requires (b.produces(bc, c))
ensures (a.produces(ab.concat(bc), c¢))
fn produces trans(a: Self, ab: Seq< s:Item>, b: Self, bc:
Seqg< ::Item>, c: Self);

28

Modeling iterators

trait {
type Item;
predicate
fn completed(&mut) —> bool;
predicate
fn produces (, visited: Seqg< ::Item>, : Self) -> bool;

ensures (match result {
None => self.completed(),
Some(v) => (*self).produces(Seq::singleton(v), "self)

})

fn next (&mut) => < ::Item>;

29

Modeling iterators

trait {
type Item;

predicate
fn completed(&mut) —> bool;
predicate
fn produces (, visited: Seg< ::Ttem>, : Selfy . . .

— Accesses the final value of
a mutable borrow.

Unique to Creusot

ensures (match result {
None => self.completed(),
Some(v) => (*self).produces(Seq::singleton(v), "self)

})

fn next (&mut) => < ::Item>;

29

lterMut

Next

struct IterMut<'a, T> {
inner: &'a mut [T],

}

impl<'a, T> for IterMut<'a, T> {
type Item = &'a mut T;

fn next(&mut) => < st Item> {
.inner.take first mut()

30

lterMut

Completed

struct IterMut<'a, T> {
inner: &'a mut [T],

}

impl<'a, T> for IterMut<'a, T> {
type Item = &'a mut T;

predicate
fn completed(&mut) —> bool {
pearlite! ({ .resolve() && (@ .lnner).ext eq(Seq::EMPTY) }
}

31

lterMut

Produces

struct IterMut<'a, T> {
inner: &'a mut [T],

}
impl<'a, T> for IterMut<'a, T> {
predicate
fn produces (, Visited: Seg< ::Item>, tl: Self) -> bool {
.inner.to mut seq().ext eq(
visited.concat(tl.inner.to mut seq())
)

}

}

fn to mut seq(&mut [T]) -> Seq<&mut T>

32

lterMut

Laws

struct IterMut<'a, T> {
inner: &'a mut [T],

}

impl<'a, T> for IterMut<'a, T>

predicate
fn produces (, Visited: Seg<

law
ensures (a.produces (Seq: :EMPTY, a)

fn produces refl(a: Self) {}

law

requires (a.produces(ab, b))

requires (b.produces(bc, c))

ensures (a.produces(ab.concat(bc),
fn produces trans(a: Self, ab: Seq<

Seqg< ::Item>, c: Self) {}

{

s:Item>, tl: Self) -> bool {

)

C))
s:Item>, b: Self, bc:

}

for-loops

Reasoning about for-loops

Desugaring a for-loop

fn counter() {
let mut v = vec![1, 2, 3, 4];
let mut cnt = 0;
let w = v
.iter mut()
.map(|x| { ent += 1; a + 1 })
.collect();

assert _eq! (cnt, 4);
for 1 in 0..4 {

assert _eq! (w[i], v[i] + 1);

}

Should be property of the Range iterator, but how does it work?

35

Reasoning about for-loops

Desugaring a for-loop

fn counter() {
let mut v = vec![1l, 2, 3, 4];
let mut cnt = 0;
let w = v
.iter mut()
.map(|x| { cnt += 1; a + 1 })
.collect();

assert _eq! (cnt, 4);
for 1 in 0..4 {

assert _eq! (w[i], v[i] + 1);

}

35

Reasoning about for-loops

Desugaring a for-loop

fn counter() {

let it = 0..4;

loop {
match it.next() {
(1) => {
assert eq!(w[i], V[i] + 1);
}
=> break,
}
}

36

Reasoning about for-loops

Desugaring a for-loop

fn counter() {
let it = 0..4;
loop {
match it.next() {
(1) => {
assert eq!(w[i], V[i] + 1);

=> break,

}

Problem: In the middle of loop, have no idea what the value of i is

36

Reasoning about for-loops

Desugaring a for-loop

fn counter() {

let it = 0..4;
invariant(??)
loop {
match it.next() {
(1) => {
assert _eq!(w[i], V[i] + 1);

=> break,

}

Problem: In the middle of loop, have no idea what the value of i is

Solution: Add a loop invariant. But... which one? Also, should be
free, as it is a property of Range

37

Reasoning about for-loops

Extending desugaring

fn counter() {

let it = 0..4;

let it old = ghost! { it };

let mut produced = ghost! { Seq::EMPTY };
invariant (it old.produces(produced, it))

loop {
match it.next() {
(i) => {
produced = ghost! { produced.push(i) };
assert eq!(w[i], v[i] + 1);
}
=> break,
}
}

}

Extend for-loops with ghost information and add a structural
invariant which is true for all iterators.

38

Reasoning about for-loops

User invariants

ensures((*v).len() == ("v).len())
ensures(V i, 0 = i < ("v).len() ==> ("v)[i] == 0)
fn all zero(v: &mut <u32>) {

invariant (?2???)
for i in v.iter mut() {
*i = 0;

}
}

How do we specify the behavior of the loop?

39

Reasoning about for-loops

User invariants

ensures((*v).len() == ("v).len())
ensures(V i, 0 = i < ("v).len() ==> ("v)[i] == 0)
fn all zero(v: &mut <u32>) {
invariant(V i, 0 = i < produced.len() ==> “produced[i] == 0)
for i in v.iter mut() {
*1 = 0;
}

}

for-loop invariants can use produced to refer to past elements.

40

Wrap-Up

 We can model iterators as state machines
 produces acts as the transition relation
« completed describes the final states of the iteration
* Approach is flexible, can express:
 Mutable iterators
* Higher order iterators

 Non-determinism, infinite iteration, etc...

42

Implementation

* We use this specfication to reason about iterators in Creusot

We’ve implemented a suite of real-world iterators:

Once Option
Empty Repeat
Iter IterMut
Map MapExt
Skip Take
FromIterator IntoIterator

collect

43

» Https://github.com/xldenis/creusot

