A CASE STUDY ON A NUMERICAL CODE

IN C: LOG-SUM-EXP

PAUL BONNOT
JOINT WORK WITH RAPHAEL RIEU-HELFT (TRUSTINSOFT)
AND CLAUDE MARCHE (INRIA-SACLAY&LMF)

NOVEMBER 21ST, 2022

CONTEXT

m Goal: formally verify two C functions defined on
floating-point numbers : LSE and MLSE.
» Absence of overflow
» Bounds on the rounding errors w.r.t. to pure real computations
m Results obtained:

» Formal proof of LSE in WhyML and in C.
» Formal proof of MLSE in WhyML and (partly) in C.

double 1lse(double a[], size_t size) {
int 1i;
double s = 0.0;
for (1 = 0; 1 < size; i++) {
s += exp_approx(al[il);
}

return log_approx(s);

}

Let a be a vector of size n. Then
n—1
LSE(a) = log Z exp(a;)
i=0

Objective: bound the error of FP computation compared to the
real computation with errors A and B depending on input size.

‘I_/S\E(a,n) - LSE(a,n)’ < A|LSE(a,n)| +B

MLSE FUNCTION

Let a be a vector of n numbers and x a number between o and 1
+X — @
MLSE(a,n,x) = log(n +Z log (Zexp <)>>

We look for values A’ and B’ such that:

MLSE(a,n,x) —MLSE(a,n,x)‘ < A'|MLSE(a,n,x)|+ B’

THE TOOLS USED

ACSL: Formal specification of C code
Example [Boldo & Marchg, 2011] :
/*2) requires |x| < 275; %/
/*q) ensures [result—cos(X)| <27%3; */
float my_cos(float x) {
/+q) assert [1-%X —cos(x)| <27%; */
return 1 - X * X * ©:.55

}

m From C to WhyML : TrustInSoft Analyzer with the J3 plug-in
m From WhyML to SMT : Why3

m Solvers:

» Generalistic SMT solvers: Alt-Ergo, CVC4, CVC5

> Specialized solver: Gappa, for rounding errors, for absence of
overflows

» Specialized solver: DReal, for inequalities over the reals

SO W N A

THE APPROACH USED

-

. Analysis of the summation of vectors

11 On paper
1.2 Proof formalization in WhyML

. LSE analysis

21 On paper
2.2 Proof formalization in WhyML

3. MLSE analysis
3.1 On paper
3.2 Proof formalization in WhyML

. Formal proof on C code with ACSL annotations

N

d5

ROUNDING ERRORS ON SUMMATION

OF VECTORS

ROUNDING ERRORS ON SUMMATION
OF VECTORS

SUM OF DOUBLES, ON PAPER

REMINDER

For rounding mode RNE and format double, for all x :
|round(x) — x| < |X|e+n
with e =273 and n = 27975,

We define the sum of floating point numbers like this :
B XDy =round(X+Y)
m @, a=0ifn<m;
m P!, a= (D, a)®a,ifm<n.

Better bound for addition:

(x@y)—(X+y)| < [x+yle

SUM OF DOUBLES

Assuming n < -- and that for all i, |a;] <2%7°:

Dai- Za:

i=1

Absolute error

", la;| instead of |/ a;|

<2an|a|

SUM OF DOUBLES

We first prove an intermediate bound by induction over n :

n n
Dai-La
i=1 i=1

n
<Y lajl(en +€2n?)
i=1

We then use the fact that n < ;L to prove the final bound

OVERFLOWS

No overflow on inductive case : (" a;) & a, < maxFloat

Lemma
For all c > o and for all vector a such as |a;| < ¢, we have:

n
nc(—1—2¢en) < @a; < nc(142¢en)
i=1

With e =273, n < 25" and ¢ < 297° we don’t have an overflow.

ROUNDING ERRORS ON SUMMATION
OF VECTORS

WHYML FORMALIZATION

WHYML FORMALIZATION

let rec function sum_double (f:int -> double) (a b:int)
if (b <= a) then

0
else

(sum_double f a (b - 1)) & f (b - 1)

DU W N A

We use, from WhyML IEEE-float library:
m type double, which includes values for infinities and NaN
m @ for addition, without check for overflow

WHYML FORMALIZATION

1 constant max_val = 29°

2 constant max_size = 2%

3

4 let ghost sum_double_err (f:int -> double) (a b:int)
5 variant { b - a }

6 requires { o < b - a < max_size A

7 Vi. a <i<b — |fi < max_val }

8 ensures {

9 [result - sum_real f a b| <

10 (sum_real (fun i -> |f i|]) a b) x (e(b-a) + &*(b-a)?)
1 }

2 = ...

Formalizes the result on the bounds, with a pre-condition for
absence of overflow

WHYML FORMALIZATION: THE PROOF

let ghost sum_double_err (f:int -> double) (a b:int)

1

2 ...

3 = let s = sum_double f a (b - 1) in

4 assert IH {

5 s - sum_real a (b - 1)| <

6 (sum_real (fun i -> |f i|]) a (b-1)) x e(b-a-1)
7 + e2(b-a-1)?)

8

9

I8

sum_real bounds (-max_val) max_val f a (b-1);
10 sum_real_bounds © max_val (fun i -> |f i|) a (b-1);
1 assert s_bound { |s| < 2'°3 };

12 let s’ = s & f (b-12) in ...

m Assertion IH: inductive hypothesis

m Calls to ghost function sum_real_bounds: put a constant
bound on sum_real

m Assertion s_bound proves the absence of overflows

ERROR BOUNDS ON LSE

ERROR BOUNDS ON LSE

ON PAPER

CONTRACTS OF FLOATING-POINT VERSIONS OF exp AND

log IN WHYML

Notations: Ejog (resp. Eep) relative error of IoAg (resp. exp)

constant exp_error:real
axiom exp_error_bounds = 2733 <exp_error<27 (* was 274 %)
constant exp_max:real = 672 (% was 25 *)
val function exp_approx (x:double) : double
requires { |x| < exp_max }
ensures { |result - exp(x)| < exp_error x exp(x) }

constant log_error:real
constant max_size:real = 2% (* was 100 *)
axiom log_error_bounds = 273 <log_error<272 (* was 273 x)
val function log_approx (x:double) : double
requires { o<x < 2xmax_sizex(1+exp_error)xexp(max_val) }
ensures { |result - log(x)| < log_error x |log(x)| }

ERROR BOUND ON LSE

I_/S\E(a, n) : the floating-point implementation of LSE

Result 2
Assuming that n < 25" and for all i, |a;| < 672:

)L/S\E(a,n) - LSE(a,n)‘
= (| L2 @ ()| = el = (= P 2=)) 54 (6 e)

Proof: combining rounding errors of float sum and these of exp
and log

The relative error is Ej.

We can approximate the constant error to get

2(Eexp +2€N)) X (14 Eexp)

ERROR BOUNDS ON LSE

WHYML FORMALIZATION

WHYML FORMALIZATION OF LSE

1 let 1lse (a:array double) : double

2 requires { Vi.o < i < a.length —|a[i]| < 672 }

3 requires { o < a.length < 2% }

4 ensures {

5 let exact = log(sum_real (fun i -> exp(al[il)) e n) in
6 let err = exp_error + 2¢ a.length (1 + exp_error) in
7 [result - exact| <

8 log_error * |exact|+ log (1 - err) * (12 + log_error)
9 1}

10 =

11 let ref s = @ in

12 for i = 0 to a.length - 1 do
13 invariant {

1% s = sum_double (fun i -> exp_approx (a[i])) o i }
15 S <- s + exp_approx al[i]
16 done;

177 log_approx s

ERROR BOUND ON MLSE

ERROR BOUND ON MLSE

ON PAPER

ERROR BOUND ON MLSE

Reminder:

MLSE(a,n,x) =log(n +Z log (/Zexp <+Xa})>>

We define :] iy
MLSE;|(a,n,x) = log(n) + oy + iy |~ log (exp (%)))

Result 3

‘M/LS\E(a,n,x) - MLSE(a,n,x)’ < e|MLSE(a,n,x)|

+ MLSE | (a,n,X) x (2Ejog +2“%n)
—6nlog(1—max(2 ™, Eeyp)
+ 2E|og|log(n)| +277°72

DIFFICULTIES GOING FROM WHYML CcODE TO C CODE

J3 is still a prototype under development:
m No ghost functions
» Consequence: manual applications of lemmas in Why3 IDE
m Encoding layer between C and WhyML

» Consequence: additionnal transformations need to be
performed on Why3 IDE before applying lemmas

e —
We lose in automation

REUSING WHY3 THEORIES

J attributes to map an existing Why3 symbol to an ACSL
symbol

/*® axiomatic SumFloat __attribute_ _

((j3_theory ("sum_double.Sum"))) {
logic double sum_float(double f[], integer a,

integer b) __attribute__((j3_symbol("Sum.sum")));
b/
We can do part of the proof in Why3

Not working currently

CONCLUSIONS

RESULTS OBTAINED

m Verification of floating-point summation in WhyML with the

bound:
n n n
@Pa;—) a;| <2¢en) |aj
=1 i=1 i=1
m Verification of LSE function in WhyML and in C with the
bound :

‘I_/S\E(a,n) - LSE(a,n)‘
< Ejog|LSE(a,n)| —log(1— (Eexp +26N(1+ Eexp))) % (1+ Eiog)
m Verification of MLSE function in WhyML with the bound :
’l\/l/Lﬁi(a,n,x) — l\/ILSE(a,n,x)‘ < €|MLSE(a,n,x)|
+ MLSE | (a,n,X) x (2Ejog +2*®n)
—6nlog(1—max(2 =%, Eeyp)
+ 2Ejog|log(n)[+27"72

FUTURE WORK

m Technical details:

» Proof of C versions with J3 by supporting attributes
» Support for anonymous functions in TIS-kernel and J3

m Better automation for rounding errors combination ?
m Better handling of higher order in MLSE ?

	Rounding Errors on Summation of vectors
	Sum of doubles, on paper
	WhyML formalization

	Error bounds on LSE
	On paper
	WhyML formalization

	Error bound on MLSE
	On paper

	Proving C code
	Conclusions

