A CASE STUDY ON A NUMERICAL CODE IN C: LOG-SUM-EXP

PAUL BONNOT joint work with Raphaël Rieu-Helft (TrustInSoft) and Claude Marché (Inria-Saclay&LMF)

NOVEMBER 21ST, 2022

- Goal: formally verify two C functions defined on floating-point numbers : LSE and MLSE.
 - Absence of overflow
 - Bounds on the rounding errors w.r.t. to pure real computations
- Results obtained:
 - ► Formal proof of LSE in WhyML and in C.
 - ► Formal proof of MLSE in WhyML and (partly) in C.

LSE FUNCTION

```
double lse(double a[], size_t size) {
    int i;
    double s = 0.0;
    for (i = 0; i < size; i++) {
        s += exp_approx(a[i]);
    }
    return log_approx(s);
}</pre>
```

Let a be a vector of size n. Then

$$LSE(a) = \log \sum_{i=0}^{n-1} \exp(a_i)$$

Objective: bound the error of FP computation compared to the real computation with errors A and B depending on input size.

$$\left|\widehat{\mathsf{LSE}}(a,n) - \mathsf{LSE}(a,n)\right| \le \mathsf{A}|\mathsf{LSE}(a,n)| + \mathsf{B}$$

Let *a* be a vector of *n* numbers and *x* a number between 0 and 1

$$\mathsf{MLSE}(a, n, x) = \log(n) + \frac{x^2}{\log(4)} + \sum_{j=1}^{n} -\log\left(\sum_{j=1}^{n} \exp\left(\frac{-(a_j + x - a_j)^2}{2}\right)\right)$$

We look for values A' and B' such that:

$$\left|\widehat{\mathsf{MLSE}}(a,n,x) - \mathsf{MLSE}(a,n,x)\right| \le \mathsf{A}'|\mathsf{MLSE}(a,n,x)| + \mathsf{B}'$$

The tools used

ACSL: Formal specification of C code Example [Boldo & Marché, 2011] :

/*@ requires
$$|x| \le 2^{-5}; */$$

/*@ ensures $|\text{result} - \cos(x)| \le 2^{-23}; */$
float my_cos(float x) {
 /*@ assert $\left|1 - \frac{x^2}{2} - \cos(x)\right| \le 2^{-24}; */$
 return 1 - x * x * 0.5;
}

- From C to WhyML : TrustInSoft Analyzer with the J³ plug-in
- From WhyML to SMT : Why3
- Solvers :

2

56

- Generalistic SMT solvers: Alt-Ergo, CVC4, CVC5
- Specialized solver: Gappa, for rounding errors, for absence of overflows
- Specialized solver: DReal, for inequalities over the reals

THE APPROACH USED

1. Analysis of the summation of vectors

- 1.1 On paper
- 1.2 Proof formalization in WhyML
- 2. LSE analysis
 - 2.1 On paper
 - 2.2 Proof formalization in WhyML
- 3. MLSE analysis
 - 3.1 On paper
 - 3.2 Proof formalization in WhyML
- 4. Formal proof on C code with ACSL annotations

ROUNDING ERRORS ON SUMMATION OF VECTORS

ROUNDING ERRORS ON SUMMATION OF VECTORS

SUM OF DOUBLES, ON PAPER

For rounding mode *RNE* and format double, for all *x* :

```
|\operatorname{round}(x) - x| \le |x|\varepsilon + \eta
```

with $\varepsilon = \mathbf{2}^{-53}$ and $\eta = \mathbf{2}^{-1075}$.

We define the sum of floating point numbers like this :

Better bound for addition:

$$|(x\oplus y)-(x+y)|\leq |x+y|\varepsilon$$

Result 1

Assuming $n \leq \frac{1}{2\epsilon}$ and that for all i, $|a_i| \leq 2^{970}$:

$$\left|\bigoplus_{i=1}^{n} a_i - \sum_{i=1}^{n} a_i\right| \le 2\varepsilon n \sum_{i=1}^{n} |a_i|$$

Absolute error

 $\sum_{i=1}^{n} |a_i|$ instead of $|\sum_{i=1}^{n} a_i|$

We first prove an intermediate bound by induction over *n* :

$$\left|\bigoplus_{i=1}^{n}a_{i}-\sum_{i=1}^{n}a_{i}\right|\leq \sum_{i=1}^{n}|a_{i}|(\varepsilon n+\varepsilon^{2}n^{2})$$

We then use the fact that $n \leq \frac{1}{2\varepsilon}$ to prove the final bound

No overflow on inductive case : $(\bigoplus_{i=m}^{n-1} a_i) \oplus a_n \leq maxFloat$

Lemma

For all $c \ge 0$ and for all vector a such as $|a_i| \le c$, we have:

$$nc(-1-2\varepsilon n) \leq \bigoplus_{i=1}^{n} a_i \leq nc(1+2\varepsilon n)$$

With $\varepsilon = 2^{-53}$, $n \le 2^{51}$ and $c \le 2^{970}$ we don't have an overflow.

ROUNDING ERRORS ON SUMMATION OF VECTORS

WHYML FORMALIZATION

```
1 let rec function sum_double (f:int -> double) (a b:int)
2 =
3 if (b <= a) then
4 0
5 else
6 (sum_double f a (b - 1)) ⊕ f (b - 1)</pre>
```

We use, from WhyML IEEE-float library:

- type double, which includes values for infinities and NaN
- $\blacksquare \oplus$ for addition, without check for overflow

WHYML FORMALIZATION

```
1 constant max val = 2^{970}
    constant max size = 2^{51}
2
3
    let ghost sum_double_err (f:int -> double) (a b:int)
4
      variant \{b - a\}
5
      requires { o \leq b - a \leq max size \land
6
                     \forall i. a < i < b \rightarrow |f i| < max val \}
7
8
      ensures {
          |result - sum_real f a b| \leq
9
            (sum real (fun i -> |f i|) a b) \times (\varepsilon(b-a) + \varepsilon<sup>2</sup>(b-a)<sup>2</sup>)
10
       }
11
12
    =
```

Formalizes the result on the bounds, with a pre-condition for absence of overflow

WHYML FORMALIZATION: THE PROOF

```
let ghost sum_double_err (f:int -> double) (a b:int)
1
2
   = let s = sum double f a (b - 1) in
3
   assert IH {
4
        |s - sum_real a (b - 1)| \leq |s|
5
          (sum_real (fun i -> |f i|) a (b-1)) \times \epsilon(b-a-1)
6
             + \epsilon^{2}(b-a-1)^{2})
7
8
     };
      sum_real_bounds (-max_val) max_val f a (b-1);
9
     sum real bounds o max val (fun i -> |f i|) a (b-1);
10
     assert s_bound { |s| \le 2^{1023} };
11
      let s' = s \oplus f (b-1) in ...
12
```

- Assertion IH: inductive hypothesis
- Calls to ghost function sum_real_bounds: put a constant bound on sum_real
- Assertion s_bound proves the absence of overflows

ERROR BOUNDS ON LSE

ERROR BOUNDS ON LSE

ON PAPER

CONTRACTS OF FLOATING-POINT VERSIONS OF exp AND log IN WHYML

Notations: E_{log} (resp. E_{exp}) relative error of log (resp. exp) constant exp_error:real axiom exp_error_bounds = $2^{-53} \le exp_error \le 2^{-7}$ (* was 2^{-40} *) constant exp_max:real = 672 (* was 25 *) val function exp_approx (x:double) : double requires { $|x| \le exp_max$ } ensures { $|result - exp(x)| \le exp_error \times exp(x)$ } constant log_error:real constant max size:real = 2^{51} (* was 100 *)

axiom log_error_bounds = $2^{-53} \le \log_{error} \le 2^{-2}$ (* was 2^{-36} *) val function log_approx (x:double) : double requires { $0 < x \le 2 \times \max_{size \times (1+exp_{error}) \times exp(\max_{val})$ } ensures { |result - $\log(x)$ | $\le \log_{error} \times |\log(x)|$ } $\widehat{LSE}(a,n)$: the floating-point implementation of LSE

Result 2

Assuming that $n \le 2^{51}$ and for all $i, |a_i| \le 672$:

$$\begin{aligned} \left| \widehat{\mathsf{LSE}}(a,n) - \mathsf{LSE}(a,n) \right| \\ \leq E_{\mathsf{log}} | \mathsf{LSE}(a,n) | - \mathsf{log}(1 - (E_{\mathsf{exp}} + 2\varepsilon n(1 + E_{\mathsf{exp}}))) \times (1 + E_{\mathsf{log}}) \end{aligned}$$

Proof: combining rounding errors of float sum and these of $\widehat{\exp}$ and $\widehat{\log}$ The relative error is E_{\log} . We can approximate the constant error to get $2(E_{\exp} + 2\varepsilon n)) \times (1 + E_{\exp})$

ERROR BOUNDS ON LSE

WHYML FORMALIZATION

WHYML FORMALIZATION OF LSE

```
let lse (a:array double) : double
1
    requires { \forall i.0 \leq i < a.length \rightarrow |a[i]| \leq 672 }
2
    requires { 0 < a.length \leq 2^{51} }
3
4
    ensures {
5
    let exact = log(sum real (fun i -> exp(a[i])) o n) in
6
   let err = exp_error + 2\varepsilon a.length (1 + exp_error) in
7
   |result - exact| \leq
8
    log error * |exact|+ log (1 - err) * (1 + log error)
9
   }
10
11 let ref s = \odot in
12 for i = 0 to a.length - 1 do
   invariant {
13
14 s = sum double (fun i -> exp approx (a[i])) ο i }
15 s <- s + exp approx a[i]
   done;
16
17 log approx s
```

ERROR BOUND ON MLSE

ERROR BOUND ON MLSE

ON PAPER

Error bound on MLSE

Reminder:

$$\mathsf{MLSE}(a, n, x) = \log(n) + \frac{x^2}{\log(4)} + \sum_{j=1}^n -\log\left(\sum_{j=1}^n \exp\left(\frac{-(a_j + x - a_j)^2}{2}\right)\right)$$

We define : $MLSE_{||}(a, n, x) = \log(n) + \frac{x^2}{\log(4)} + \sum_{i=1}^{n} \left| -\log\left(\sum_{j=1}^{n} \exp\left(\frac{-(a_i + x - a_j)^2}{2}\right)\right) \right|$

Result 3

$$\begin{split} \left| \widehat{\mathsf{MLSE}}(a,n,x) - \mathsf{MLSE}(a,n,x) \right| &\leq \varepsilon \left| \mathsf{MLSE}(a,n,x) \right| \\ &+ \mathsf{MLSE}_{||}(a,n,x) \times (2E_{\log} + 2^{-48}n) \\ &- 6n \log(1 - \max(2^{-45}, E_{\exp})) \\ &+ 2E_{\log} |\log(n)| + 2^{-1072} \end{split}$$

PROVING C CODE

J³ is still a prototype under development:

- No ghost functions
 - Consequence: manual applications of lemmas in Why3 IDE
- Encoding layer between C and WhyML
 - Consequence: additionnal transformations need to be performed on Why3 IDE before applying lemmas

We lose in automation

J³ attributes to map an existing Why3 symbol to an ACSL symbol

We can do part of the proof in Why3

Not working currently

CONCLUSIONS

RESULTS OBTAINED

Verification of floating-point summation in WhyML with the bound:

$$\left. \bigoplus_{i=1}^{n} a_{i} - \sum_{i=1}^{n} a_{i} \right| \leq 2\varepsilon n \sum_{i=1}^{n} |a_{i}|$$

Verification of LSE function in WhyML and in C with the bound :

$$\begin{aligned} & \left| \widehat{\text{LSE}}(a,n) - \text{LSE}(a,n) \right| \\ & \leq E_{\log} | \text{LSE}(a,n) | - \log(1 - (E_{\exp} + 2\varepsilon n(1 + E_{\exp}))) \times (1 + E_{\log}) \end{aligned}$$

■ Verification of MLSE function in WhyML with the bound :

$$\begin{split} \left| \widehat{\mathsf{MLSE}}(a,n,x) - \mathsf{MLSE}(a,n,x) \right| &\leq \varepsilon \left| \mathsf{MLSE}(a,n,x) \right| \\ &+ \mathsf{MLSE}_{||}(a,n,x) \times (2E_{\log} + 2^{-48}n) \\ &- 6n \log(1 - \max(2^{-45}, E_{\exp})) \\ &+ 2E_{\log} |\log(n)| + 2^{-1072} \end{split}$$

24

- Technical details :
 - Proof of C versions with J³ by supporting attributes
 - Support for anonymous functions in TIS-kernel and J³
- Better automation for rounding errors combination ?
- Better handling of higher order in MLSE ?