
A case study on a numerical code
in C: Log-Sum-Exp

Paul Bonnot
joint work with Raphaël Rieu-Helft (TrustInSoft)
and Claude Marché (Inria-Saclay&LMF)

November 21st, 2022

Context

Goal: formally verify two C functions defined on
floating-point numbers : LSE and MLSE.
▶ Absence of overflow
▶ Bounds on the rounding errors w.r.t. to pure real computations

Results obtained:
▶ Formal proof of LSE in WhyML and in C.
▶ Formal proof of MLSE in WhyML and (partly) in C.

1 25

LSE function

double lse(double a[], size_t size) {
int i;
double s = 0.0;
for (i = 0; i < size; i++) {
s += exp_approx(a[i]);

}
return log_approx(s);

}

Let a be a vector of size n. Then

LSE(a) = log
n−1

∑
i=0

exp(ai)

Objective: bound the error of FP computation compared to the
real computation with errors A and B depending on input size.∣∣∣L̂SE(a,n)−LSE(a,n)∣∣∣≤ A|LSE(a,n)|+B

2 25

MLSE function

Let a be a vector of n numbers and x a number between 0 and 1

MLSE(a,n,x)= log(n)+ x2

log(4) +
n

∑
i=1

− log

(
n

∑
j=1

exp

(−(ai+x−aj)2

2

))

We look for values A′ and B′ such that:∣∣∣M̂LSE(a,n,x)−MLSE(a,n,x)
∣∣∣≤ A′|MLSE(a,n,x)|+B′

3 25

The tools used

ACSL: Formal specification of C code
Example [Boldo & Marché, 2011] :

1 /*@ requires |x| ≤ 2−5; */
2 /*@ ensures |result− cos(x)| ≤ 2−23; */
3 float my_cos(float x) {
4 /*@ assert

∣∣∣1− x2
2 − cos(x)

∣∣∣≤ 2−24; */
5 return 1 - x * x * 0.5;
6 }

From C to WhyML : TrustInSoft Analyzer with the J3 plug-in
From WhyML to SMT : Why3
Solvers :
▶ Generalistic SMT solvers: Alt-Ergo, CVC4, CVC5
▶ Specialized solver: Gappa, for rounding errors, for absence of

overflows
▶ Specialized solver: DReal, for inequalities over the reals

4 25

The approach used

1. Analysis of the summation of vectors
1.1 On paper
1.2 Proof formalization in WhyML

2. LSE analysis
2.1 On paper
2.2 Proof formalization in WhyML

3. MLSE analysis
3.1 On paper
3.2 Proof formalization in WhyML

4. Formal proof on C code with ACSL annotations

5 25

Rounding Errors on Summation
of vectors

6 25

Rounding Errors on Summation
of vectors

Sum of doubles, on paper

Reminder

For rounding mode RNE and format double, for all x :

| round(x)−x| ≤ |x|ε +η

with ε = 2−53 and η = 2−1075.

We define the sum of floating point numbers like this :
x⊕y = round(x+y)⊕n

i=mai = 0 if n≤m;⊕n
i=mai =

(⊕n−1
i=mai

)
⊕an if m< n.

Better bound for addition:

|(x⊕y)− (x+y)| ≤ |x+y|ε

7 25

Sum of doubles

Result 1
Assuming n≤ 1

2ε
and that for all i, |ai| ≤ 2970 :∣∣∣∣∣ n⊕

i=1
ai−

n

∑
i=1
ai

∣∣∣∣∣≤ 2εn
n

∑
i=1

|ai|

Absolute error
∑
n
i=1 |ai| instead of

∣∣∑n
i ai
∣∣

8 25

Sum of doubles

We first prove an intermediate bound by induction over n :∣∣∣∣∣ n⊕
i=1

ai−
n

∑
i=1
ai

∣∣∣∣∣≤ n

∑
i=1

|ai|(εn+ ε
2n2)

We then use the fact that n≤ 1
2ε

to prove the final bound

9 25

Overflows

No overflow on inductive case :
(⊕n−1

i=mai
)
⊕an ≤maxFloat

Lemma
For all c≥ 0 and for all vector a such as |ai| ≤ c, we have:

nc(−1−2εn)≤
n⊕
i=1

ai ≤ nc(1+2εn)

With ε = 2−53, n≤ 251 and c≤ 2970 we don’t have an overflow.

10 25

Rounding Errors on Summation
of vectors

WhyML formalization

WhyML formalization

1 let rec function sum_double (f:int -> double) (a b:int)
2 =
3 if (b <= a) then
4 0
5 else
6 (sum_double f a (b - 1)) ⊕ f (b - 1)

We use, from WhyML IEEE-float library:
type double, which includes values for infinities and NaN
⊕ for addition, without check for overflow

11 25

WhyML formalization

1 constant max_val = 2970

2 constant max_size = 251

3
4 let ghost sum_double_err (f:int -> double) (a b:int)
5 variant { b - a }
6 requires { 0 ≤ b - a ≤ max_size ∧
7 ∀i. a ≤ i < b → |f i| ≤ max_val }
8 ensures {
9 |result - sum_real f a b| ≤

10 (sum_real (fun i -> |f i|) a b) × (ε(b-a) + ε2(b-a)2)
11 }
12 = ...

Formalizes the result on the bounds, with a pre-condition for
absence of overflow

12 25

WhyML formalization: the proof

1 let ghost sum_double_err (f:int -> double) (a b:int)
2 ...
3 = let s = sum_double f a (b - 1) in
4 assert IH {
5 |s - sum_real a (b - 1)| ≤
6 (sum_real (fun i -> |f i|) a (b-1)) × ε(b-a-1)
7 + ε2(b-a-1)2)
8 };
9 sum_real_bounds (-max_val) max_val f a (b-1);

10 sum_real_bounds 0 max_val (fun i -> |f i|) a (b-1);
11 assert s_bound { |s| ≤ 21023 };
12 let s’ = s ⊕ f (b-1) in ...

Assertion IH: inductive hypothesis
Calls to ghost function sum_real_bounds: put a constant
bound on sum_real
Assertion s_bound proves the absence of overflows

13 25

Error bounds on LSE

14 25

Error bounds on LSE

On paper

Contracts of floating-point versions of exp and
log in WhyML

Notations: Elog (resp. Eexp) relative error of l̂og (resp. êxp)
constant exp_error:real
axiom exp_error_bounds = 2−53 ≤exp_error≤ 2−7 (* was 2−40 *)
constant exp_max:real = 672 (* was 25 *)
val function exp_approx (x:double) : double
requires { |x| ≤ exp_max }
ensures { |result - exp(x)| ≤ exp_error × exp(x) }

constant log_error:real
constant max_size:real = 251 (* was 100 *)
axiom log_error_bounds = 2−53 ≤log_error≤ 2−2 (* was 2−36 *)
val function log_approx (x:double) : double
requires { 0<x ≤ 2×max_size×(1+exp_error)×exp(max_val) } (* was ≃ 100×e25 *)
ensures { |result - log(x)| ≤ log_error × | log(x)| }

15 25

Error bound on LSE

L̂SE(a,n) : the floating-point implementation of LSE

Result 2
Assuming that n≤ 251 and for all i, |ai| ≤ 672:∣∣∣L̂SE(a,n)−LSE(a,n)

∣∣∣
≤ Elog|LSE(a,n)|− log(1− (Eexp+2εn(1+Eexp)))× (1+Elog)

Proof: combining rounding errors of float sum and these of êxp
and l̂og
The relative error is Elog.
We can approximate the constant error to get
2(Eexp+2εn))× (1+Eexp)

16 25

Error bounds on LSE

WhyML formalization

WhyML formalization of LSE

1 let lse (a:array double) : double
2 requires { ∀i.0 ≤ i < a.length → |a[i]| ≤ 672 }
3 requires { 0 < a.length ≤ 251 }
4 ensures {
5 let exact = log(sum_real (fun i -> exp(a[i])) 0 n) in
6 let err = exp_error + 2ε a.length (1 + exp_error) in
7 |result - exact| ≤
8 log_error * |exact|+ log (1 - err) * (1 + log_error)
9 }

10 =
11 let ref s = 0 in
12 for i = 0 to a.length - 1 do
13 invariant {
14 s = sum_double (fun i -> exp_approx (a[i])) 0 i }
15 s <- s + exp_approx a[i]
16 done;
17 log_approx s

17 25

Error bound on MLSE

18 25

Error bound on MLSE

On paper

Error bound on MLSE

Reminder:

MLSE(a,n,x)= log(n)+ x2

log(4) +
n

∑
i=1

− log

(
n

∑
j=1

exp

(−(ai+x−aj)2

2

))
We define :
MLSE||(a,n,x) = log(n)+ x2

log(4) +∑
n
i=1

∣∣∣− log
(

∑
n
j=1 exp

(
−(ai+x−aj)2

2

))∣∣∣
Result 3

∣∣∣M̂LSE(a,n,x)−MLSE(a,n,x)
∣∣∣≤ ε |MLSE(a,n,x)|

+ MLSE||(a,n,x)× (2Elog+2−48n)
−6n log(1−max(2−45,Eexp)

+ 2Elog| log(n)|+2−1072

19 25

Proving C code

20 25

Difficulties going from WhyML code to C code

J3 is still a prototype under development:
No ghost functions
▶ Consequence: manual applications of lemmas in Why3 IDE

Encoding layer between C and WhyML
▶ Consequence: additionnal transformations need to be

performed on Why3 IDE before applying lemmas

We lose in automation

21 25

Reusing Why3 theories

J3 attributes to map an existing Why3 symbol to an ACSL
symbol
/*@ axiomatic SumFloat __attribute__

((j3_theory ("sum_double.Sum"))) {
logic double sum_float(double f[], integer a,
integer b) __attribute__((j3_symbol("Sum.sum")));

} /*

We can do part of the proof in Why3

Not working currently

22 25

Conclusions

23 25

Results obtained

Verification of floating-point summation in WhyML with the
bound: ∣∣∣∣∣ n⊕

i=1
ai−

n

∑
i=1
ai

∣∣∣∣∣≤ 2εn
n

∑
i=1

|ai|

Verification of LSE function in WhyML and in C with the
bound :∣∣∣L̂SE(a,n)−LSE(a,n)

∣∣∣
≤ Elog|LSE(a,n)|− log(1− (Eexp+2εn(1+Eexp)))× (1+Elog)

Verification of MLSE function in WhyML with the bound :∣∣∣M̂LSE(a,n,x)−MLSE(a,n,x)
∣∣∣≤ ε |MLSE(a,n,x)|

+ MLSE||(a,n,x)× (2Elog+2−48n)
−6n log(1−max(2−45,Eexp)

+ 2Elog| log(n)|+2−1072

24 25

Future work

Technical details :
▶ Proof of C versions with J3 by supporting attributes
▶ Support for anonymous functions in TIS-kernel and J3

Better automation for rounding errors combination ?
Better handling of higher order in MLSE ?

25 / 25

	Rounding Errors on Summation of vectors
	Sum of doubles, on paper
	WhyML formalization

	Error bounds on LSE
	On paper
	WhyML formalization

	Error bound on MLSE
	On paper

	Proving C code
	Conclusions

