
Interaction Features in SPARK
Yannick Moy - AdaCore

SPARK - Auto-Active Proof for Ada Programs

GNAT

SPARK

A(1) := 42;

WhyML

a.map__content <-
 set
 (a.map__content)
 (let temp = 1 : int in
 assert { temp ... };
 temp)
 (42 : value)

SMT-LIB

(assert
 (not
 (=> (dynamic_property 0 1000000
 (to_rep a__first) (to_rep a__last))
 (=> (and (= (to_rep a__first) 1)
 (<= 0 (to_rep a__last)))
 (<= (to_rep a__first) 1)))))
(check-sat)

SPARK - User-Level View

SPARK

A(1) := 42;
file.adb:6:13: medium: array index check might fail

The Nurse: Providing First Aid

Step 1: understand the immediate cause of the problem

The Nurse: Providing First Aid

Step 1: understand the immediate cause of the problem

usual message

counterexample valuesexplanation

The Nurse: Providing First Aid

The Nurse: Providing First Aid

SPARK 16: we get a counterexample! :-)

SPARK 17: we lost the counterexample :-\

SPARK 18: we regain a counterexample :-?

SPARK 21: we have a better counterexample \o/ (previous slide)

SPARK 22: we lost again the counterexample…

SPARK 23: … but we already recovered it in the next release!

The Investigator: Looking for Probable Cause

Step 2: understand the root cause of the problem

The Investigator: Looking for Probable Cause

Step 2: understand the root cause of the problem

internal information

possible root cause

The Investigator: Looking for Probable Cause

No loop unrolling
info: cannot unroll loop (value of loop bounds / too many loop iterations)

Contract not available
info: (implicit) function contract not available for proof ("F" might not return)
info: (implicit) function contract might not be available on recursive calls
info: call to "From_Universal_Image" is not handled precisely

Missing information
info: no contextual analysis of "F" (in assertion expression)
info: default initial condition on type "T" not available for proof in an assertion
context

The Magician: Suggesting a Possible Fix

Step 3: fix the problem!

The Magician: Suggesting a Possible Fix

Step 3: fix the problem!
faulty pattern

clearly missing information

The Magician: Suggesting a Possible Fix

warning: unused variable "N" in conjunct [-gnatw.t]
warning: consider extracting conjunct from quantified expression [-gnatw.t]

possible fix: use pragma Overflow_Mode or switch -gnato13 or unit
Ada.Numerics.Big_Numerics.Big_Integers
possible fix: overlaying object should have an Alignment representation clause
possible fix: use "and then" instead of "and" in precondition

possible fix: add or complete related loop invariants or postconditions
possible fix: subprogram at p.ads:42 should mention V in a precondition
possible fix: add precondition (V in A'First .. A'Last) to subprogram at p.ads:42
possible fix: add precondition (if V >= 0 then W >= Integer'First + V else W <=
Integer'Last + V) to subprogram at p.ads:42

Questions!

Can we provide correct counterexamples in more complex cases?
[F-IDE 2021, "Explaining Counterexamples with Giant-Step Assertion Checking"]

Can we adapt the tool feedback to the level of expertise of the user?

Can we improve the presentation of Verification Conditions?
[F-IDE 2018, “Lightweight Interactive Proving inside an Automatic Program Verifier”]

Can we develop true proof assistants? (closer to Office Clippy than to Coq)

Can the analyzer help the user help the analyzer help the user?

