Interaction Features in SPARK

Yannick Moy - AdaCore

IV

2,
S

AdaCore aLTRanN

PARTNERSHIP

WS /0,9

R

S
AN

<

SPARK - Auto-Active Proof for Ada Programs

WhyML SMT-LIB
a.map__content <- (aisezt
SPARK set no ’
/ (a.map__content) (=> (dynam1C_pr‘oper‘"cy 0 1000000
A(1) := 42: (let temp = 1 : int in (to_rep a_ first) (to_rep a_ last))
() 1= 4% .} (=> (and (= (to_rep a__first) 1)

assert { temp ..
temp) (<= @ (to_rep a__last)))
(42 : value) (<= (to_rep a__first) 1)))))

(check-sat)

SPARK - User-Level View

P~
—_— {' :’ —_

SPARK

A(1l) := 42;
file.adb:6:13: medium: array index check might fail

The Nurse: Providing First Aid

Step 1: understand the immediate cause of the problem

The Nurse: Providing First Aid

Step 1: understand the immediate cause of the problem

usual message

nurse.adb:6:13: array index check might fail
6 | S (@)= ¥ N
|

|
(2="")
irst = 2

value musthbe a valid index into the array

explanation counterexample values

The Nurse: Providing First Aid

pragma Assert (X in Positive);

pragma Assert (X = 42 and Y = 42);

pragma Assert (for all X in Positive => X > -X and then (for all Y in Positive => X > Y));
function Prop (X, Y : Natural) return Boolean is (X > -X and X > Y);

pragma Assert (Prop (X, Y));

split.adb:7:22: assertion might fail, cannot prove lower bound for X in Positive
Al pragma Assert (¥i

|
split.adb:10:22: assertion might fail, cannot prove X = 42

10 | pragma Assert (and Y = 42);
|

split.adb:13:89: assertion might fail, cannot prove X > Y

13 | pragma Assert (for all X in Positive => X > -X and then (for all Y in Positive => ¥
|

split.adb:16:22: assertion might fail, cannot prove X > -X
16 | pragma Assert ());

The Nurse: Providing First Aid

SPARK 16: we get a counterexample! :-)
nurse.adbi6:13: wedlun: array index check elght Fatl (e.0. Wihen 3= 1 and S'PAESE =2 and S'Lest =:2)

SPARK 17: we lost the counterexample :-\

SPARK 18: we regain a counterexample :-?

wurse.adb:6:13: medium: array index check might fail (e.g. when

SPARK 21: we have a better counterexample \o/ (previous slide)

SPARK 22: we lost again the counterexample...

SPARK 23: ... but we already recovered it in the next release! '\ﬂ

The Investigator: Looking for Probable Cause

Step 2: understand the root cause of the problem

The Investigator: Looking for Probable Cause

Step 2: understand the root cause of the problem

internal information

investigator.adb:5:24: cannot unroll loop (too many Lloop iterations)
expression function body not available for proof ("All Blanks" might not return)

investigator.ads:6:18:

investigator.ads:9:19: postcondition might fail
9 | with Post =>)
|
S'Firsti= @
S'Last = -1
loop at investigator.adb:5 should mention S in a loop invariant
| for J in S'Range loop

|

possible root cause

The Investigator: Looking for Probable Cause

No loop unrolling
info: cannot unroll loop (value of loop bounds / too many loop iterations)

Contract not available
info: (implicit) function contract not available for proof ("F" might not return)
info: (implicit) function contract might not be available on recursive calls
info: call to "From_Universal _Image" is not handled precisely

Missing information
info: no contextual analysis of "F" (in assertion expression)
info: default initial condition on type "T" not available for proof in an assertion
context

The Magician: Suggesting a Possible Fix

Step 3: fix the problem!

The Magician: Suggesting a Possible Fix

Step 3: fix the problem!
faulty pattern

magician.adb:17:33: suspicious expressiop~{-gnatw.t]
pragma Loop_Invariant (
!
did you mean (for all X => (if P then Q)) [-gnatw.t]
or (for some X => P and then Q) instead? [-gnatw.t]

magician.ads:6:19: postcondition might fail
6 | with Post =>) ¥-
I

S'First = 1
S'Last = 9
you should consider adding a postcondition to function All_Blanks or
turning it into an expression function

clearly missing information

The Magician: Suggesting a Possible Fix

warning: unused variable "N" in conjunct [-gnatw.1]
warning: consider extracting conjunct from quantified expression [-gnatw.t]

possible fix:

use pragma Overflow_Mode or switch -gnato13 or unit

Ada.Numerics.Big _Numerics.Big_Integers

possible fix:
possible fix:

possible fix:
possible fix:
possible fix:
possible fix:

overlaying object should have an Alignment representation clause
use "and then" instead of "and" in precondition

add or complete related loop invariants or postconditions
subprogram at p.ads:42 should mention V in a precondition

add precondition (V in A'First .. A'Last) to subprogram at p.ads:42
add precondition (if V >= 0 then W >= Integer'First + V else W <=

Integer'Last + V) to subprogram at p.ads:42

Questions!
Can we provide correct counterexamples in more complex cases?

[F-IDE 2021, "Explaining Counterexamples with Giant-Step Assertion Checking"|
Can we adapt the tool feedback to the level of expertise of the user?

Can we improve the presentation of Verification Conditions?
[F-IDE 2018, “Lightweight Interactive Proving inside an Automatic Program Verifier’]

Can we develop true proof assistants? (closer to Office Clippy than to Coq)

Can the analyzer help the user help the analyzer help the user?

