2L % L £ L1639

Trusted Counterexamples in SPARK

Benedikt Becker, Claude Marché, Yannick Moy
AdaCore Paris
October 21, 2021

Examples for proof failures

procedure Example1 (X : Natural)
is

Y : Natural := X + 1;
begin

pragma Assert (Y /= 43); ()
end Example1;

> gnatprove: medium: assertion might fail (e.g. when Y = 43)

> proof failure due to non-conformance between code and assertion

Examples for proof failures

procedure Incr (X: in out Natural)
with Post => (X > X’'Old) is

begin
X = X + 1;

end Incr;

procedure Example2 (Y : in out Natural)
with Post => (Y = Y’0Old + 1) (¥)

is

begin
Incr (Y);

end Example2;

> gnatprove: medium: postcondition might fail (e.g. when Y’'Old = @ and Y = 2)
> proof failure due to a subcontract-weakness

Examples for proof failures

procedure Example3 (A, B: in Natural)
with Pre => A >= 2 and B >= 2
is
C : constant Natural := 12166397;
begin
pragma Assert (A * B /= C); (%)
end Example3;

> gnatprove: medium: assertion might fail (e.g. when A = 2 and B = 2)

> bad counterexample!

Candidate counterexample generation in Why3

Dailler, Hauzar, Marché, Moy (2018): Instrumenting a Weakest Precondition Calculus for Counterexample Generation

SPARK

gnatawhy

Why3

WhyML

SPARK
program

program

VC generation +

transformations

Candidate

Candidate
Counterexample

import

negated goal

SMT solver

Verification
goals

recon:

struction

SMT
input

counterexample

> no guarantee on the validity of the solver models
— potentially bad counterexamples

> no hints on the reason of the proof failure

Solver ‘_W
models

(check-sat)
unsat

Goal
proved

|. Trusted counterexamples in Why3

Becker, Belo Lourenco, Marché (2021): Explaining Counterexamples with Giant-Step Assertion ChecRing

SPARK Why3 SMT solver
SPARK WhyML VC generation + Verification negated goal SMT
program program transformations goals input
(check-sat)
Candidate Trusted classification Candidate reconstruction || Solver y Wt Goal
Counterexample counterexample using RAC counterexamples models proved

import

Motivation: make counterexamples more helpful for users
> validate candidate counterexamples

> categorise proof failures as non-conformity or subcontract weakness
using normal + giant-step runtime assertion checking

Outline

I. Trusted counterexamples in Why3

© Runtime assertion checking in Why3
© Giant-step runtime assertion checking
@ Validation of counterexamples and categorisation of proof failures

Il. Trusted counterexamples in SPARK

Normal runtime assertion checking in Why3

> normal program execution, validity of annotations are checked
> invalid annotations terminate execution

> Failure for assertions
> Stuck for assumptions

Normal runtime assertion checking in Why3

> normal program execution, validity of annotations are checked
> invalid annotations terminate execution

> Failure for assertions
> Stuck for assumptions

> Why3's annotation language is not executable
1. steps to check an annotation

incomplete incomplete
Step: — ———> | prover(negate-goal(T))
a i i alid incomplete

2. “incomplete” may or may not terminate execution (configurable)
3. checked annotations as preconditions for subsequent checks

Runtime assertion checking of a counterexample

let example1 (x: int)
= lety =x+11in

assert { y <> 43 }(:)

> counterexample: x=42

Preparation

1. find program function from where the verification goal originates

2. initialise arguments for initial function call and global variables
with values from counterexample

Runtime assertion checking of a counterexample

let example1 (x: int)
= lety =x+11in

assert { y <> 43 }(:)

> counterexample: x=42

> normal RAC: main 42 «~ Failure

Preparation

1. find program function from where the verification goal originates

2. initialise arguments for initial function call and global variables
with values from counterexample

Intermediate result

> failure in normal RAC = non-conformity between program and annotation

But how to identify a sub-contract weakness?

Giant-step runtime assertion checking

Deductive program verification is modular

> from the outside, function and loops are defined by their post-condition and invariants
(sub-contracts), not their bodies

> counterexamples values for function calls and loops
comply to the sub-contracts (usually!)

Giant-step runtime assertion checking

Deductive program verification is modular

> from the outside, function and loops are defined by their post-condition and invariants
(sub-contracts), not their bodies

> counterexamples values for function calls and loops
comply to the sub-contracts (usually!)

Idea of giant-step RAC: like normal RAC but
> don't execute function bodies, don't iterate loop bodies

> retrieve return values and values of written variables from oracle

Giant-step runtime assertion checking

Function calls

RAC execution of a function call

fvie vy
at location p in environment I', with

let f Xq...Xp, writes { V1,...,¥m }
requires { ¢pre } ensures { ¢post } = €

1. bind arguments to parameters
2. assert pre-conditions

3. normal RAC:
evaluate body e to result value v, modifying written
variables by side-effect

4. assert post-conditions

5. return value v

M= rl:...,X,'<—V,'7...]
M1+ dpre

(v,ly) :=eval(e,)

a[result < v] - @post
(V, r2)

Giant-step runtime assertion checking

Function calls

RAC execution of a function call
fvie vy
at location p in environment I and oracle Q, with

let f Xq...Xp, writes { V1,...,¥m }
requires { ¢pre } ensures { ¢post } = €

1. bind arguments to parameters Fe=T[..,X<V,...]
2. assert pre-conditions M1+ dpre
3. giant-step RAC:
retrieve result value v and v =Q(result,p)
update written variables from oracle Mo=T4[...,¥ < Qi p),---]
4. assume post-conditions M [result < v] - ¢post

5. return value v (v,l2)

Giant-step runtime assertion checking
While loops

RAC execution of a while loop at location p
in environment I and oracle Q:

while e; writes { yq,...,¥n }
invariant { ¢j,, } do e, done

1. assert invariant (initialisation) M+ Giny
2. giant-step:
> update written variables from oracle =Ty < Qyi,p), - -]
> assume invariant M1 = Giny
3. if condition e, is true (true,T,) :=eval(e,,T,)
> evaluate loop body e, (0),T3) =eval(e,T,)
> assert invariant (preservation) I3+ Giny
> stuck

4. else done (0.T2)

ldentification of a sub-contract weakness

Giant-step RAC of a counterexample

let incr (x: int) : int let example2 (x: int)
ensures { result > x } = let y = incr x in
= X + 1 assert{y=x+1}@

> counterexample: x=o0, y=2

> find program function from where the verification goal originates
> two executions: normal RAC and giant-step RAC
> counterexample as oracle for

> initial values of global variables + arguments for initial function call
> written variables and return values in giant-step RAC

ldentification of a sub-contract weakness

Giant-step RAC of a counterexample

let incr (x: int) : int let example2 (x: int)
ensures { result > x } = let y = incr x in
= X + 1 assert{y=x+1}@

> counterexample: x=o0, y=2

> normal RAC: example2 o ~ Normal termination

> find program function from where the verification goal originates
> two executions: normal RAC and giant-step RAC
> counterexample as oracle for

> initial values of global variables + arguments for initial function call
> written variables and return values in giant-step RAC

ldentification of a sub-contract weakness

Giant-step RAC of a counterexample

let incr (x: int) : int let example2 (x: int)
ensures { result > x } = let y = incr x in
= X + 1 assert{y=x+1}@

> counterexample: x=o0, y=2

> normal RAC: example2 o ~ Normal termination
> giant-step RAC: example2 o, incr x = 2« Failure

> find program function from where the verification goal originates
> two executions: normal RAC and giant-step RAC
> counterexample as oracle for

> initial values of global variables + arguments for initial function call
> written variables and return values in giant-step RAC

Classification of candidate counterexamples (CE)

Normal RAC

Giant-step RAC

Failure Normal Incomplete Stuck

Failure

Normal

Incomplete

Stuck

Non-conformity if failure matches goal else Bad CE

Sub-contract Bad CE Incomplete Bad CE
weakness

Non-conformity Incomplete Incomplete Bad CE
or sub-contract

weakness

Bad CE (Invalid assumption)

|. Trusted counterexamples in Why3

Becker, Belo Lourenco, Marché (2021): Explaining Counterexamples with Giant-Step Assertion ChecRing

SPARK Why3 SMT solver

SPARK WhyML Verification SMT
program program goals input
(check-sat)
unsat

VC generation + negated goal

transformations

Candidate Trusted classification Candidate reconstruction || Solver y Goal
Counterexample counterexample using RAC counterexamples models proved

import

Motivation: make counterexamples more helpful for users
> validate candidate counterexamples

> categorise proof failures as non-conformity or subcontract weakness
using normal + giant-step runtime assertion checking

Il. Trusted counterexamples in SPARK

negated goal

SMT solver

SPARK Why3
SPARK WhyML VC generation + Verification
program program transformations goals
classification Candidate

Trusted
Counterexample

Trusted
counterexample using RAC

reconstruction

SMT
input

counterexamples

classification using RAC + import

> generated WhyML program not executable
> classification in gnat2why based on results from

> giant-step RAC of generated program in Why3
> normal RAC of original program in SPARK

Solver y
models

(check-sat)
unsat

Goal
proved

Concrete RAC in SPARK

> implemented in Ada as part of gnatawhy

> annotations are computed

> limited by stack height and “fuel”

> result is combined with result of giant-step RAC from Why3

Results

procedure Example1 (X : Natural)
is

Y : Natural := X + 1;
begin

pragma Assert (Y /= 43); ()
end Example1;
> high: assertion might fail

(e.g. when Y = 43)

procedure Example3 (A, B: in Natural)
with Pre => A >= 2 and B >= 2
is
C : constant Natural := 12166397;
begin
pragma Assert (A * B /= C); (%)
end Example3;
> medium: assertion might fail

procedure Incr (X: in out Natural)
with Post => (X > X'0Old) is
begin
X = X + 1;
end Incr;

procedure Example2 (Y : in out Natural)
with Post => (Y = Y'Old + 1) @

is

begin
Incr (Y);

end Example2;

> medium: postcondition might fail
(e.g. when Y'0Old = 0 and Y = 2)
[tip: add or complete related loop

invariants or postconditions]

Current state

Statistics on the SPARK testsuite with 3391 counterexamples in 39150 checks

Result Count Percentage
Incomplete checking 1614 (47.58%)
Checked counterexamples 1778 (52.42%)
- bad counterexample 621 - (34.93%)
- non conformity 617 - (34.70%)
- non conformity or subcontract weakness 464 - (26.10%)

- subcontract weakness 76 - (4.27%)

Future work

> add support for more SPARK language features
> more return values and values of written variables in candidate counterexample

> identifying single sub-contract weaknesses
> dealing with incomplete oracles

Code dive!

Ideas
> classification table in gnatawhy
> locations and position attributes for return values in generated WhyML program
> giant-step RAC in gnatwhy3
> CE classification in Why3
[

