TRUST® SOFT

TRUSTI SOFT

C/C++ code analysis with TIS Analyzer: some challenges

for deductive verification

2018-11-23

1. Introduction

2. Memory model needs

3. Memory Model and Side Effects
4, Arithmetic

5. C/C++ Language support

6. Conclusion

TRUST® SOFT

Introduction

TrustinSoft's ProofInUse goals related to deductive verification

Our methodology:

- Prove the absence of undefined behavior by Value analysis

- Use counter-example

- to help the user understand the generated alarms
- to eliminate false-alarms

- Write annotations to understand which properties hold where

- Write annotations to help the value analysis

- mainly relational properties

- also properties on ranges (validity, initialization, ...)

- Functional proof for very specific use-cases: basic libraries, small

pieces of code within a very large code base

TRUST® SOFT

Collaboration between WP and Value analysis

extern int T[100];
//@ requires val: n < 100;
void need relation (unsigned int x, unsigned int n) {
if (x <= n) {
unsigned int i = n - x;
//@ assert wp: i < 100;
T[i] = 0;
}
b

int main (...) { ... };

- precondition checked by Value
- needed by WP to check the assertion

- used by Value to ensure the memory access validity

TRUST® SOFT

Memory model needs

Missing separation hypothesis

The separation hypotheses are easily forgotten:

/*@ requires hyp: \valid(x) && \valid(y);
@ ensures wp: \result == \old(*y); */
int separation (int *x, int *y) {

*x = *y;
*y = 3;
return *x;

- Missing hypothesis: requires \separated (x, y);
- Difficult to find in complex proof obligations

- A readable counter example would be useful!

TRUST® SOFT

Proving Initialization

When there is a relation between a pointer and a size,
WP is often needed to prove properties about them:
void init (char * p, int n) {
for (int i = 0; 1 < n; i++)
*(p+i) = i;

//@ assert wp2: \initialized (p + (0 .. n-1));

Memory model needs to support the notion of \initialized memory

TRUST® SOFT

Harder counter-example: missing hypothesis

/*@ requires \valid (p + (0..n-1));
@ ensures wp: p[0] == 0; */
void reset (char * p, unsigned int n) {
char * pi = p;
/*@ loop assigns i, pi, p[0..n-1]
@ loop invariant wp: pi == p + i;
@ loop invariant wp:
\forall integer k; 0 <= k < i ==> p[k] == 0; */

for (unsigned int i = 0; i < n; i++, pi++)

*pi = 0;
}
- Missing: requires n != 0;
- Another fix could be: ensures wp: n == 0 || p[0] == 0O;

- Which counter-examples can we generate?

TRUST® SOFT

I Tailel I8 (void*) -> (char*) Joolils

The previous example would often be written using void* pointer:

/*@ requires n != 0 && \valid (((char*)p) + (0..n-1));
@ ensures wp: ((char*)p)[0] == 0; */
void reset (void * p, unsigned int n) {
char * pi = (char*)p;
/*@ loop assigns i, pi, ((char*)p)[0..n-1]
@ loop invariant wp: pi == ((char*)p) + i;
@ loop invariant wp:
\forall integer k; 0 <= k < 1 ==> ((char*)p)[k] == 0; */
for (unsigned int i = 0; 1 < n; i++, pi++)

*pi = 0;

Memory model should support this.

TRUST® SOFT

TRUST® SOFT

pointer for memcpy callers

typedef unsigned long size t;
/*@ assigns \result, ((char*)dest)[0..n-1]

@ ensures hyp: \initialized (((char*)dest)+ (0 .. n-1)); */
void *memcpy (void *dest, const void *src, size t n);

typedef struct { int a; int b; int c; } data;
/*@ requires valid p: \valid read (buf + (0 .. len-1));
@ requires init: \initialized (buf + (0 .. len-1));
@ ensures wp2: \result == -1 || \initialized (info); */
int use_memcpy (const char * buf, size t len, data * info) {
size t sz = sizeof (*info);
if (len < sz) return -1;
memcpy (info, buf, sz);

return sz;

Needed to be able to use library functions

Unions (wit ut pointers)

typedef struct {
int kind;
union { int i; char c; long 1; } value;
} data;
void union_access (data * d) {
switch (d->kind) {
case 1: d->value.i = 3; break;
case 2: d->value.c = 3; break;
case 3: d->value.l = 3; break;

}

//@ assert wrong: wp: d->value.i == 3;

//@ assert wp: d->kind == ==> d->value.i == 3;
}

Expected counter-example: d->kind = 42

Heterogeneous access is not very common.

TRUST® SOFT

Memory Model and Side Effects

Side effects: the problem

- often need to move a property from one point to another one
- propagation through calls and loops which do not interfere

- guess (absence of) side effects as much as possible

- help the user to find missing hypotheses

TRUST® SOFT

Side effect: relying on scopes

Much information can be deduced from the scopes:

Since p is valid, it cannot point to the x or y local variables:

//@ requires hyp: \valid (p); ensures e p: wp: *p == 4;
void local scope (int * p) {

int x = 10;

int y = 20;

*p o= 45

X++; //@ assert a x: wp: x == 11; // because \separated (p, &x);

y++; //@ assert a y: wp: y == 21; // because \separated (p, &);
p = &; //@ assert a p: wp: *p == 11;

Moreover, the local p is different from the post-condition parameter.

Memory model needs to reflect these scoping issues

TRUST® SOFT

Side effect: without specification

In some occasion, no specification is needed:
int f (int, int);
void skip with no effect (int x, int y) {
if (x <vy) {

int z = f (x, y);
//@ assert wp: x < y;

Whatever f is doing, it cannot change x or y.

TRUST® SOFT

Side effect: using function assigns properties

int compute (int * p, int * q);

void skip with assigns call (int x, int y) {
if (x <vy) {
int z = compute (&x, &y);
//@ assert wp: X < y;

The compute function may have changed x or y.

Can we generate a readable counter-example?

TRUST® SOFT

Side effect: using loop assigns properties

Similar to assigns

TRUST® SOFT

Arithmetic

Integer signs

- casts between signed and unsigned number are often used,;

- signed: check overflow;

- unsigned: modulo arithmetic;

void sign_vs unsigned (int x, unsigned int u) {
unsigned int u2 = u + 1;

//@ assert wrong: wp: u2 > u; // missing hyp
int x2 = x + 1;

//@ assert wp: x2 > x; // OK

unsigned int ux = (unsigned int)x;

//@ assert wrong: wp: X == ux; // missing hyp
int y = (int)u;

//@ assert wrong: wp: y == u; // missing hyp

TRUST® SOFT
-

Integer sizes

- casts between different integer sizes are also very often used

- especially implicit ones on function calls

- need bound checking.

//@ assigns \result \from s; ensures \result == s + 1;
short incr (short s);

//@ ensures wp: \result == n + 1; // missing hypothesis
int int_cast (int n) {

return incr (n);

TRUST® SOFT

17

C/C++ Language support

Suppo statements

Error management
break/continue/return,

Logical conjunctions/disjunctions

#define CHECK(f) do { if ((ret = f) != 0) goto cleanup; } while(0)
//@ assigns \result \from n; ensures n < 10 ==> \result == 1;
int compute (int n);
int goto on error (int n) {
int ret;
CHECK(compute (n));
//@ assert wp: n >= 10;
ret = 0;
cleanup:
return(ret);

TRUST® SOFT

goto for C++ exception 1/2

Generate jumps inside blocks of C++ code.

int main() {
try { throw 42; }
catch(int &x) { return x; }

TRUST® SOFT

C++ exception 2/2

Generate jumps inside blocks of C++ code.

int main(void) { int _ retres;

_ tis_exc_stack_depth ++;

_ tis_exc_stack[__tis_exc_stack depth - 1].payload = tis_alloc((unsigned long)sizeof(int));
*((int *)_ tis_exc_stack[_tis_exc_stack depth - 1].payload) = 42;

_ tis_exc_stack[__tis_exc_stack_depth - 1].typeinfo = & _ tis typeinfo i;

__tis exc_stack[__tis_exc_stack depth - 1].inheritance = (struct _ tis inheritance const *)0U;
__tis_exc_stack[__ tis_exc_stack depth - 1].refcount = (long *)tis_alloc ((unsigned long)sizeof(int));
*(__tis_exc_stack[__ tis_exc_stack depth - 1].refcount) = 1L;

_ tis_exc_stack[_ tis exc_stack depth - 1].dtor = (void (*)(void *))0;

_ tis_unwinding = 1;

goto _ tis_unwinding_label;

if (0) {
_ tis_unwinding label: _ tis unwinding = 0;
if (__tis_exc_stack[__tis_exc_stack_depth - 1].typeinfo == & _ tis_typeinfo_i) {
int *x; int _ tis_exn_guard_CtorGuard; struct _ tis exn_guard _ tis_exn_guard;

x = (int *)_ tis_exc_stack[_ -
_ tis_caught_stack depth ++;
*(__tis_exc_stack[_ tis exc_stack depth - 1].refcount) += (long)l;

_ tis caught stack[tis caught stack depth - 1] = tis exc_stack[tis exc_stack depth - 1];
_ tis_exc_stack_depth --;

s_exc_stack_depth - 1].payload;

tis_exn_guard_CtorGuard = 1;

return_label: return _ retres; 20
}

L__ __retres = *x;

@) if (tis_exn_guard_CtorGuard) _ tis_exn_guard::Dtor(& _ tis_exn_guard);
%)

goto return_label;

; } else { _ tis unwinding = 0; _ tis std_terminate(); } }

=)

(24

[=

Supporting dynamic calls/function pointers 1/2

struct Foo {
//@ ensures \result == 12;
virtual int f() { return 12; }

int main(void) {
Foo foo;
int r = foo.f();
//@ assert virtual call: r == 12;

return r;

2

TRUST® SOFT

Supporting dynamic calls/function pointers 2/2

struct Foo {
struct _ tis typeinfo const *_ tis typeinfo ;
struct _ tis_vmt_entry const *_ tis_pvmt ;
Y
/*@ requires \valid(this); ensures this->pvmt == pvmt; */
void Foo::Ctor(struct Foo *this, struct _ tis_vmt_entry const *_ pvmt);
/*@ requires \valid(this); ensures \result = 12; */
int Foo::f(struct Foo *this);
int main(void) {
struct Foo foo; int r;
Foo::Ctor(& foo, (struct _ tis_vmt_entry const *)(& Foo::_ tis class_vmt));
struct _ tis_vmt_entry const * virtual;
__virtual = foo._tis pvmt + 1;
r = (*((int (*)(struct Foo *))_ virtual->method ptr))
((struct Foo *)((char *)&foo + _ virtual->shift_this));
/*@ assert virtual call: r = 12; */ ;
return r; }
struct _ tis_vmt_entry const Foo::_ tis_class_vmt[2U] =
{{.method_ptr = (void (*)(void))(& Foo:: tis class_inheritance),
.shift_this = (long)oU,
.shift_return = (long)oU},
.method _ptr = (void (*)(void))(& Foo::f),
.shift_this = (long)ou,
.shift_return = (long)6U}}

-~

TRUST® SOFT

Supporting dynamic calls/function pointers 3/2

Function pointers in specifications:

struct Foo {
//@ ensures \result == 12;
virtual int f() { return 12; }
}i
/*@ requires foo->f(void) == Foo::f(void); */
int h(Foo *foo) {
int r = foo->f();
//@ assert virtual call: r == 12;
return r;

TRUST® SOFT

Conclusion

We need readable counter-examples

- even with goto statements
- with relations between the output and the initial source code:
- need meaningful names
- even more when some interactive proof is required
- even with dynamic allocation: pervasive in C++ code using the STL
- need to detect unimplemented features: it is okay to refuse to prove
something on a function if one can explain to the user why this code is

out-of-scope.

file.c: P is not proved (Timeout) vs

file.c:42 cannot prove P in f because at line 44
p is aliased to q
Counter-example: p == &, q == &

TRUST® SOFT

	Introduction
	Memory model needs
	Memory Model and Side Effects
	Arithmetic
	C/C++ Language support
	Conclusion

