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union-find API

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool
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specification

type elem

type uf = {

mutable dom: set elem;

mutable rep: elem -> elem;

}

val ghost create () : uf

val make (ghost uf: uf) () : elem

val union (ghost uf: uf) (x y: elem) : unit

val find (ghost uf: uf) (x : elem) : elem

val same (ghost uf: uf) (x y: elem) : bool
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specification

type elem

type uf = {

mutable dom: set elem;

mutable rep: elem -> elem;

}

invariant { forall x. mem x dom ->

mem (rep x) dom && rep (rep x) = rep x }

val ghost create () : uf

ensures { result.dom = empty }
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specification

val make (ghost uf: uf) () : elem

writes { uf.dom, uf.rep }

ensures { not (mem result (old uf.dom)) }

ensures { uf.dom = add result (old uf.dom) }

ensures { uf.rep = (old uf.rep)[result <- result] }

val find (ghost uf: uf) (x: elem) : elem

requires { mem x uf.dom }

ensures { result = uf.rep x }
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specification

val union (ghost uf: uf) (x y: elem) : ghost elem

requires { mem x uf.dom }

requires { mem y uf.dom }

writes { uf.rep }

ensures { result = old (uf.rep x) ||

result = old (uf.rep y) }

ensures { forall z. mem z uf.dom ->

uf.rep z = if old (uf.rep z = uf.rep x ||

uf.rep z = uf.rep y)

then result

else old (uf.rep z) }
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implementation

type elem =

content ref

and content =

| Link of elem

| Root of int
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implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 2

y z v

u

w 0

let’s verify this with Why3
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Why3 implementation

too complex for Why3’s type checker; let’s model the heap

type elem =

content ref

and content =

| Link of elem

| Root of int

type loc

type elem =

loc

type content =

| Link loc

| Root Peano.t

type heap = {

ghost mutable

refs: loc -> option content;

}

8 / 21



heap operations

predicate allocated (h: heap) (x: loc) =

h.refs x <> None

val alloc ref (ghost h: heap) (v: content) : loc

writes { h.refs }

ensures { (old h).refs result = None }

ensures { h.refs = (old h.refs)[result <- Some v] }

val get ref (ghost h: heap) (l: loc) : content

requires { allocated h l }

ensures { Some result = h.refs[l] }

val set ref (ghost h: heap) (l: loc) (c: content) : unit

requires { allocated h l }

writes { h.refs }

ensures { h.refs = (old h.refs)[l <- Some c] }

val (==) (x y: loc) : bool

ensures { result <-> x=y } 9 / 21



embedding the mini-heap

type uf = {

heap: heap;

mutable dom : set elem;

mutable rep : elem -> elem;

}

...

invariant { forall x. mem x dom <-> allocated heap x }
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main invariants

type uf =

...

invariant { forall x. match heap.refs x with

| Some (Link y) -> x <> y /\ allocated heap y /\

rep x = rep y

| Some (Root _) -> rep x = x

| None -> true end }

invariant { forall x. mem x dom ->

match heap.refs (rep x) with

| Some (Root _) -> true

| _ -> false end }
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termination

it would be very tempting to introduce an inductive notion of path

inductive path (h: heap) (x y: elem) =

| Path0: forall x y k.

h.refs x = Some (Root k) ->

path h x x

| Path1: forall x y z.

h.refs x = Some (Link y) ->

path h y z -> path h x z

this way, we would have path heap x (rep x) as an invariant
and this would ensure the termination of find
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termination

but this is a bad idea, as each assignment in the heap requires you
to re-establish all paths (some unchanged, some shortened, etc.)

instead, we assign

• a distance to each node, increasing along Link

• a maximum distance for the whole union-find structure
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new invariants

type uf =

...

mutable dst : elem -> int;

mutable maxd: int;

}

...

invariant { forall x. match heap.refs x with

| Some (Link y) -> ... /\ dst x < dst y

| ... }

invariant { 0 <= maxd }

invariant { forall x. mem x dom -> dst x <= maxd }
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proof

the verification is fully automated
(using Alt-Ergo 2.2.0 and CVC4 1.6)

in particular, there is

• no lemma

• no assertion

• no interactive proof
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extraction to OCaml

Why3 extraction mechanism

1. removes ghost code

2. maps some Why3 symbols to OCaml symbols

here

• type Peano.t is mapped to OCaml’s type int

• our custom mini-heap is mapped to OCaml’s references
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extraction to OCaml

we write a small custom driver file uf.drv for our model

module uf.UnionFind

syntax type loc "content ref"

syntax val (==) "%1 == %2"

syntax val alloc ref "ref %1"

syntax val get ref "!%1"

syntax val set ref "%1 := %2"

end

and then extract OCaml code as follows:

why3 extract -D ocaml64 -D uf.drv -L .

uf.UnionFind -o uf.ml
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related work

Charguéraud & Pottier did a Coq proof [ITP 2015, JAR 2017]

of a similar OCaml code, using CFML

• includes a proof of complexity!

• maps OCaml’s type int to Coq’s type Z (unsound)

• more than 4k lines
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lessons learned

1. modeling the heap can be easy
I can be local
I incurs a small TCB

2. avoid recursive/inductive definitions for better automation

two other examples:
I heap stored in an array
I inverting a permutation in-place
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heap stored in an array

a 1 3 4 4 7 5 ...

1

3

4 7

4

5

0 1 2 3 4 5

0

1

3 4

2

5

it would be tempting to introduce trees

but a universal, local invariant

∀i . a[i ] ≤ a[2i + 1], a[2i + 2]

is all you need
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inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

4 3 0 1 5 2

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices
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inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]
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again it would tempting to introduce paths, orbits, cycles, etc.
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inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]
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inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]
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