
Partial Support for Access 
Types in SPARK



• Pointers are called access types in Ada

• Dereferences are done using .all

• We only support pointing to the heap in SPARK

Access Types in SPARK
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type Int_Access is access Integer;

X : Int_Access := new Integer’(10);

pragma Assert (X.all = 10);

type Int_Access is access all Integer;

Y : Integer := 10;

X : Int_Access := Y’Address;



• Enforce single writer / multiple readers principle

• Rules enforced in the compiler frontend part of GNATprove

• The rules still allow interesting programs

Access Types in SPARK – Ownership Rules

3

X : Int_Access := new Integer’(10);

Y : Int_Access := X;

V : Integer := X.all;

procedure Swap (X, Y : in out Int_Access) is

T : Int_Access := X; -- ownership of X transferred to T

begin

X := Y;              -- ownership of Y transferred to X

Y := T;              -- ownership of T transferred to Y

end Swap;



• Access types are translated as regular types (copied on assignment)

• Normal VC-gen is only valid because of ownership rules

• Allows to verify simple programs using pointers

Access Types in SPARK – Translation to Why
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Y := X;

Y.all := 11;

pragma Assert (X.all = 10);

procedure Swap (X, Y : in out Int_Access) with

Pre  => X /= null and Y /= null,

Post => X.all = Y.all'Old and Y.all = X.all'Old;



Future Enhancements

• Already in the SPARK language manual

• But not supported by the toolset yet

• Some are challenges

1. Check absence of memory leaks

2. Support recursive data structures

3. Support statically known aliases (aka. Local borrowers)

4. Quantification over recursive data structures
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1. Check Absence of Memory Leaks

• Can take advantage of single ownership to check for memory leaks

• Access objects need to be moved or freed before being overritten / 
going out of scope
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declare

X : Int_Access := new Integer’(10);

Y : Int_Access := new Integer’(10);

begin

Y := X;     -- Memory leak, Y’s content is lost

end;          -- Memory leak, X’s content is lost



1. Check Absence of Memory Leaks

• Need to know when something is erased (goes out of scope/ is 
overridden)

• Checks can be done in flow analysis / frontend when easy

• Have to use proof on more complex cases
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X : My_Rec := (F => new Integer’(10));

declare

Y : constant My_Rec := X;  -- Observe X.F

begin

...

end;                         -- Y.F does not go out of scope



1. Check Absence of Memory Leaks

Check for memory leaks in proof:

• Set accesses to null when moved in Why

• Check for nullity when values are erased

• Nullification not visible from regular semantics 
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X : R := (F1 => 1, 

F2 => new Integer’(10), 

F3 => (G => new Integer’(10)));

Y : R := X;       -- nullify X.F2 and X.F3.G

X.F3 := Y.F3;     -- check that X.F3.G is null



2. Support Recursive Data Structures

• Ada record types cannot be directly recursive

• Access types allow to construct recursive types

• Could be traversed using recursive calls
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type List_Cell;

type List is access List_Cell;

type List_Cell is record

Next : List;

end record;

function Length (L : List) return Natural is

(if L = null then 0 else 1 + Length (L.Next));



2. Support Recursive Data Structures

• Can be supported in Why using an abstract type

• Along with conversion functions
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type closed_list

type list_cell = { next : closed_list }

type list =

{ is_null : bool; value : list_cell; address : int }

function open (l : closed_list) : list

function close (l : list) : closed_list

axiom open_close:

forall l : list. open (close l) = l



3. Statically known aliases (aka. Local borrowers)

• SPARK RM allows local borrowers of (recursive) data structures

• Aliases are known statically
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X : List := new List_Cell’(Next => ...);

declare

Y : access List_Cell := X;  -- value of X is not moved

begin

...                         -- modify Y

end;                          -- ownership goes back to X

Z : access T := (if Use_X then X else Y); 



3. Statically known aliases (aka. Local borrowers)

• Borrowers can reference arbitrarily deep parts of the object 

• Can also call (traversal) functions to initialize a borrower
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Y : access List_Cell := X;

begin

if Y.Val /= 0 then

Y := Y.Next;  -- The exact position of Y in X is not 

-- known statically.

end if;

function Find (X : List; V : Integer) return access List_Cell;

Y : access List_Cell := Find (X, 0);



3. Statically known aliases (aka. Local borrowers)

• Local borrowers can be used to modify the underlying object

• Idea: translate local borrowers as a path in the underlying object

• Modify the underlying object instead of modifying the borrower
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declare

Y : access List_Cell := Find (X, 0);

begin

Y.Val := 1;

end;

-- X has been modified



3. Statically known aliases (aka. Local borrowers)

First attempt: Use sequences of directions for paths

But proof will be difficult:

• Inductive reasoning over paths

• Quantification over complex types
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X : Tree := ...;

Y : access Tree_Cell := X.all.Left.all.Left.all.Right;

-- Y is statically known to refer to a part of X

-- Y is translated as the path (Left, Left, Right)



3. Statically known aliases (aka. Local borrowers)

Second attempt: Use the address of the local borrower

• Reachability is axiomatized

• Get queries the structure at an arbitrary position

• Set modifies the structure at arbitrary position
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let all_to_zero (l : ref list) =  

(if !l.address = 0 then return);

let w = ref !l.address in

while !w <> 0 do

invariant { !w = 0 \/ valid !l !w }

let new_val = {(get !l !w) with value = {(get !l !w).value with content = 0 }} in

l := set !l !w new_val;

w := (open (get !l !w).value.next).address

done



4. Quantification over Recursive Data Structures

• Quantification in Ada is bounded

• Can be defined through iteration primitives
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pragma Assert (for all Y : ???. (if Reach (X, Y) then ...));

type List is access List_Cell with

Iterable => (First => First,

Next  => Next,

...);

function First (L : List) return Cursor;

function Next (L : List; C : Cursor) return Cursor;



4. Quantification over Recursive Data Structures

• Define a generic package providing this aspect for any simply 
recursive data type
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generic

type Cell is private;

type Base_Cont is access Cell;

type Succ is (<>);

with function Next (L : access Cell; S: Succ) return access Cell;

package Iterator with SPARK_Mode is

type Container is new Base_Cont with

Iterable => ...; -- allow quantification

type Address is private;     -- direct access to Why3 representation

function Reach (L : Container; A1, A2 : Address) return Boolean;



4. Quantification over Recursive Data Structures

• 4 examples on lists and 3 on binary trees manually translated to Why

• Proof requires a complex axiomatization of reachability which should 
be generated depending on the data structure
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procedure All_To_Zero (L : in out List) with

Post => (for all Y of L => Y.Content = 0);

Lists Binary Trees

150 lines 230 lines

26 axioms 39 axioms

15 are redundant 23 are redundant


